首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The alternating-direction collocation (ADC) method can be formulated for general parabolic partial differential equations. This is done using a piecewise cubic Hermite trial space defined on a rectangular discretization. As in all alternating-direction methods, the ADC algorithm produces errors that are additional to the standard discretization errors of multi-dimensional collocation. These errors increase when the coefficients of the governing equation are spatially variable. Analysis of the additional errors leads to several correction schemes. Numerical results indicate that a variant on the Laplace-modification procedure is an attractive choice as an improved ADC algorithm.  相似文献   

2.
The alternating-direction collocation (ADC) method combines the attractive computational features of a collocation spatial approximation and an alternating-direction time marching algorithm. The result is a very efficient solution procedure for parabolic partial differential equations. To date, the methodology has been formulated and demonstrated for second-order parabolic equations with insignificant first-order derivatives. However, when solving transport equations, significant first-order advection components are likely to be present. Therefore, in this paper, the ADC method is formulated and analyzed for the transport equation. The presence of first-order spatial derivatives leads to restrictions that are not present when only second-order derivatives appear in the governing equation. However, the method still appears to be applicable to a wide variety of transport systems. A formulation of the ADC algorithm for the nonlinear system of equations that describes density-dependent fluid flow and solute transport in porous media demonstrates this point. An example of seawater intrusion into coastal aquifers is solved to illustrate the applicability of the method. An alternating-direction collocation solution algorithm has been developed for the general transport equation. The procedure is analogous to that for the model parabolic equations considered by Celia and Pinder [2]. However, the presence of first-order spatial derivatives requires special attention in the ADC formulation and application. With proper implementation, the ADC procedure effectively combines the efficient equation formulation inherent in the collocation method with the efficient equation solving characteristics of alternating-direction time marching algorithms. To demonstrate the viability of the method for problems with complex velocity fields, the procedure was applied to the problem of density-dependent flow and contaminant transport in groundwaters. A standard example of seawater intrusion into coastal aquifers was solved to illustrate the applicability of the method and to demonstrate its potential use in practical problems.  相似文献   

3.
Mathieu’s equation is solved by an asymptotic averaging method in the fourth approximation for the first to fourth resonance domains and in the third approximation for the zero resonance domain. The general periodic and aperiodic solutions on characteristic curves are found, and the general solution is obtained in instability domains and stability-domain areas adjacent to the characteristic curves. All the solutions are explicitly found in the form of functions of an argument without using the auxiliary parameter employed in Whittaker’s method. Simple formulas depending on two parameters of the equation are derived for the characteristic exponent in instability domains and for the frequency of slow oscillations in stability domains near the characteristic curves. The theory is developed by analyzing the resonances exhibited by Mathieu’s equation.  相似文献   

4.
An efficient method for solving parabolic systems is presented. The proposed method is based on the splitting-up principle in which the problem is reduced to a series of independent 1D problems. This enables it to be used with parallel processors. We can solve multidimensional problems by applying only the 1D method and consequently avoid the difficulties in constructing a finite element space for multidimensional problems. The method is suitable for general domains as well as rectangular domains. Every 1D subproblem is solved by applying cubic B-splines. Several numerical examples are presented.  相似文献   

5.
The stability of nonlinear explicit difference schemes with not, in general, open domains of the scheme operators are studied. For the case of path-connected, bounded, and Lipschitz domains, we establish the notion that a multi-level nonlinear explicit scheme is stable iff (if and only if) the corresponding scheme in variations is stable. A new modification of the central Lax–Friedrichs (LxF) scheme is developed to be of the second-order accuracy. The modified scheme is based on nonstaggered grids. A monotone piecewise cubic interpolation is used in the central scheme to give an accurate approximation for the model in question. The stability of the modified scheme is investigated. Some versions of the modified scheme are tested on several conservation laws, and the scheme is found to be accurate and robust. As applied to hyperbolic conservation laws with, in general, stiff source terms, it is constructed a second-order nonstaggered central scheme based on operator-splitting techniques.  相似文献   

6.
We discuss the problem of sparse representation of domains in ℝ d . We demonstrate how the recently developed general theory of greedy approximation in Banach spaces can be used in this problem. The use of greedy approximation has two important advantages: (1) it works for an arbitrary dictionary of sets used for sparse representation and (2) the method of approximation does not depend on smoothness properties of the domains and automatically provides a near optimal rate of approximation for domains with different smoothness properties. We also give some lower estimates of the approximation error and discuss a specific greedy algorithm for approximation of convex domains in ℝ2.  相似文献   

7.
We show that the method of commuting vector fields can be applied to quasilinear wave equations with localized dissipations in general exterior domains. This allows us to show long time existence for general quasilinear wave equations with quadratic nonlinearities. Moreover, by assuming that the dissipation is effective in a certain neighborhood of the boundary, we need not place any assumption on the geometry of the domain.  相似文献   

8.
Fractional differential equations are powerful tools to model the non-locality and spatial heterogeneity evident in many real-world problems. Although numerous numerical methods have been proposed, most of them are limited to regular domains and uniform meshes. For irregular convex domains, the treatment of the space fractional derivative becomes more challenging and the general methods are no longer feasible. In this work, we propose a novel numerical technique based on the Galerkin finite element method (FEM) with an unstructured mesh to deal with the space fractional derivative on arbitrarily shaped convex and non-convex domains, which is the most original and significant contribution of this paper. Moreover, we present a second order finite difference scheme for the temporal fractional derivative. In addition, the stability and convergence of the method are discussed and numerical examples on different irregular convex domains and non-convex domains illustrate the reliability of the method. We also extend the theory and develop a computational model for the case of a multiply-connected domain. Finally, to demonstrate the versatility and applicability of our method, we solve the coupled two-dimensional fractional Bloch–Torrey equation on a human brain-like domain and exhibit the effects of the time and space fractional indices on the behaviour of the transverse magnetization.  相似文献   

9.
We present an efficient approach to evaluate multivariate highly oscillatory integrals on piecewise analytic integration domains. Cubature rules are developed that only require the evaluation of the integrand and its derivatives in a limited set of points. A general method is presented to identify these points and to compute the weights of the corresponding rule.

The accuracy of the constructed rules increases with increasing frequency of the integrand. For a fixed frequency, the accuracy can be improved by incorporating more derivatives of the integrand. The results are illustrated numerically for Fourier integrals on a circle and on the unit ball, and for more general oscillators on a rectangular domain.

  相似文献   


10.
Optimized Schwarz methods form a class of domain decomposition methods for the solution of elliptic partial differential equations. Optimized Schwarz methods employ a first or higher order boundary condition along the artificial interface to accelerate convergence. In the literature, the analysis of optimized Schwarz methods relies on Fourier analysis and so the domains are restricted to be regular (rectangular). In this paper, we express the interface operator of an optimized Schwarz method in terms of Poincare-Steklov operators. This enables us to derive an upper bound of the spectral radius of the operator arising in this method of 1−O(h1/4) on a class of general domains, where h is the discretization parameter. This is the predicted rate for a second order optimized Schwarz method in the literature on rectangular subdomains and is also the observed rate in numerical simulations.  相似文献   

11.
In the first section, stability-like definitions for ordinary differential equations are derived from a general qualitative concept. It is shown that the classical definitions of stability in the sense of Lyapunov, and their extensions can easily be deduced from this general formulation. A classification of all the definitions which may be derived is proposed.The second section contains the main results of this paper. It deals with the “comparison method” based upon one of T. Wazewski's theorems on differential inequalities. Several authors have used this method in order to investigate stability-like properties. We display the structure of this method, in order to state and prove some general comparison principles. These apply to the class of concepts considered earlier.In the last section some new results about stability and attractivity of sets are obtained as examples for the comparison principles. A theorem on stability in tube-like domains is proved in order to emphasize the generality and the flexibility of the comparison method.  相似文献   

12.
Summary. A least-squares mixed finite element method for general second-order non-selfadjoint elliptic problems in two- and three-dimensional domains is formulated and analyzed. The finite element spaces for the primary solution approximation and the flux approximation consist of piecewise polynomials of degree and respectively. The method is mildly nonconforming on the boundary. The cases and are studied. It is proved that the method is not subject to the LBB-condition. Optimal - and -error estimates are derived for regular finite element partitions. Numerical experiments, confirming the theoretical rates of convergence, are presented. Received October 15, 1993 / Revised version received August 2, 1994  相似文献   

13.
The computation of integrals in higher dimensions and on general domains, when no explicit cubature rules are known, can be "easily" addressed by means of the quasi-Monte Carlo method. The method, simple in its formulation, becomes computationally inefficient when the space dimension is growing and the integration domain is particularly complex. In this paper we present two new approaches to the quasi-Monte Carlo method for cubature based on nonnegative least squares and approximate Fekete points. The main idea is to use less points and especially good points for solving the system of the moments. Good points are here intended as points with good interpolation properties, due to the strict connection between interpolation and cubature. Numerical experiments show that, in average, just a tenth of the points should be used to maintain the same approximation order of the quasi-Monte Carlo method. The method has been satisfactorily applied to 2- and 3-dimensional problems on quite complex domains.  相似文献   

14.
Parabolic equations on general bounded domains are studied. Using the refined maximum principle, existence and the semigroup property of solutions are obtained. It is also shown that the solution obtained by PDE’s method has the Feynmann-Kac representation for any bounded domains.  相似文献   

15.
We consider three Ritz-Galerkin procedures with Hermite bicubic, bicubic spline and linear triangular elements for approximating the solution of self-adjoint elliptic partial differential equations and a collocation with Hermite bicubics method for general linear elliptic equations defined on general two dimensional domains with mixed boundary conditions. We systematically evaluate these methods by applying them to a sample set of problems while measuring various performance criteria. The test data suggest that collocation is the most efficient method for general use.  相似文献   

16.
Investigating the stability of nonlinear waves often leads to linear or nonlinear eigenvalue problems for differential operators on unbounded domains. In this paper we propose to detect and approximate the point spectra of such operators (and the associated eigenfunctions) via contour integrals of solutions to resolvent equations. The approach is based on Keldysh’ theorem and extends a recent method for matrices depending analytically on the eigenvalue parameter. We show that errors are well-controlled under very general assumptions when the resolvent equations are solved via boundary value problems on finite domains. Two applications are presented: an analytical study of Schrödinger operators on the real line as well as on bounded intervals and a numerical study of the FitzHugh–Nagumo system. We also relate the contour method to the well-known Evans function and show that our approach provides an alternative to evaluating and computing its zeros.  相似文献   

17.
Summary. The theory of algebraic curves and quadrature domains is used to construct exact solutions to the problem of the squeeze flow of multiply-connected fluid domains in a Hele-Shaw cell. The solutions are exact in that they can be written down in terms of a finite set of time-evolving parameters. The method is very general and applies to fluid domains of any finite connectivity. By way of example, the evolution of fluid domains with two and four air holes are calculated explicitly. For simply connected domains, the squeeze flow problem is well posed. In contrast, the squeeze flow problem for a multiply connected domain is not necessarily well-posed and solutions can break down in finite time by the formation of cusps on the boundaries of the enclosed air holes. Received September 20, 2000; accepted September 10, 2001 Online publication November 5, 2001  相似文献   

18.
The nonoxerlapping domain deoomposition method for parabolic partial differential equation on general domain is considered. A kind of domain decomposition that uses the finite element procedure ks given. The problem.over the domains can be implemented on parallel computer. Convergence analysis is also presented.  相似文献   

19.
We perform a numerical optimization of the first ten nontrivial eigenvalues of the Neumann Laplacian for planar Euclidean domains. The optimization procedure is done via a gradient method, while the computation of the eigenvalues themselves is done by means of an efficient meshless numerical method which allows for the computation of the eigenvalues for large numbers of domains within a reasonable time frame. The Dirichlet problem, previously studied by Oudet using a different numerical method, is also studied and we obtain similar (but improved) results for a larger number of eigenvalues. These results reveal an underlying structure to the optimizers regarding symmetry and connectedness, for instance, but also show that there are exceptions to these preventing general results from holding.  相似文献   

20.
In this paper, we consider an interaction system in which a wave and a viscoelastic wave equation evolve in two bounded domains, with natural transmission conditions at a common interface. We show the lack of uniform decay of solutions in general domains. The method is based on the construction of ray-like solutions by means of geometric optics expansions and a careful analysis of the transfer of the energy at the interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号