首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Sedimentation of particles in an inclined vessel is predicted using a two-dimensional, incompressible, multiphase particle-in-cell (MP-PIC) method. The numerical technique solves the governing equations of the fluid phase using a continuum model and those of the particle phase using a Lagrangian model. Mapping particle properties to an Eulerian grid and then mapping back computed stress tensors to particle positions allows a complete solution of sedimentation from a dilute mixture to close-pack. The solution scheme allows for distributions of types, sizes and density of particles, with no numerical diffusion from the Lagrangian particle calculations. The MP-PIC solution method captures the physics of inclined sedimentation which includes the clarified fluid layer under the upper wall, a dense mixture layer above the bottom wall, and instabilities which produce waves at the clarified fluid and suspension interface. Measured and calculated sedimentation rates are in good agreement.  相似文献   

2.
Sedimentation of particles in an inclined vessel is predicted using a two-dimensional, incompressible, multiphase particle-in-cell (MP-PIC) method. The numerical technique solves the governing equations of the fluid phase using a continuum model and those of the particle phase using a Lagrangian model. Mapping particle properties to an Eulerian grid and then mapping back computed stress tensors to particle positions allows a complete solution of sedimentation from a dilute mixture to close-pack. The solution scheme allows for distributions of types, sizes and density of particles, with no numerical diffusion from the Lagrangian particle calculations. The MP-PIC solution method captures the physics of inclined sedimentation which includes the clarified fluid layer under the upper wall, a dense mixture layer above the bottom wall, and instabilities which produce waves at the clarified fluid and suspension interface. Measured and calculated sedimentation rates are in good agreement.  相似文献   

3.
The particle migration effects and fluid–particle interactions occurring in the flow of highly concentrated fluid–particle suspension in a spatially modulated channel have been investigated numerically using a finite volume method. The mathematical model is based on the momentum and continuity equations for the suspension flow and a constitutive equation accounting for the effects of shear‐induced particle migration in concentrated suspensions. The model couples a Newtonian stress/shear rate relationship with a shear‐induced migration model of the suspended particles in which the local effective viscosity is dependent on the local volume fraction of solids. The numerical procedure employs finite volume method and the formulation is based on diffuse‐flux model. Semi‐implicit method for pressure linked equations has been used to solve the resulting governing equations along with appropriate boundary conditions. The numerical results are validated with the analytical expressions for concentrated suspension flow in a plane channel. The results demonstrate strong particle migration towards the centre of the channel and an increasing blunting of velocity profiles with increase in initial particle concentration. In the case of a stenosed channel, the particle concentration is lowest at the site of maximum constriction, whereas a strong accumulation of particles is observed in the recirculation zone downstream of the stenosis. The numerical procedure applied to investigate the effects of concentrated suspension flow in a wavy passage shows that the solid particles migrate from regions of high shear rate to low shear rate with low velocities and this phenomenon is strongly influenced by Reynolds numbers and initial particle concentration. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
The average settling velocity of a suspension of identical particles through otherwise quiescent fluid is smaller than the settling velocity of a single particle in an unbounded fluid. When a suspension settles out to form a deposit, this hindered settling effect may lead to complicated sedimentation behaviour, even if the initial suspension is uniformly distributed. This study analyses the bulk sedimentation of bidisperse suspensions and calculates the evolution of the volume fraction of each species from an initially vertically uniform state through to the final steady state where both species have fully settled out of suspension and have formed a deposit. These calculations are analytical and employ the method of characteristics to reveal how both particle species evolve. The profiles often include ‘shocks’, across which discontinuous changes in volume fraction occur. Rarefaction fans may also be found across which the gradients of volume fraction are discontinuous. These new analytical solutions reveal the evolving composition of the suspension and the deposit and may be compared to experimental observations. They also provide test cases that can be used to verify recent numerical techniques for computing the bulk sedimentation behaviour of polydisperse suspensions.  相似文献   

5.
A computational particle fluid dynamics (CPFD) numerical method to model gas–solid flows in a circulating fluidized bed (CFB) riser was used to assess the effects of particle size distribution (PSD) on solids distribution and flow. We investigated a binary PSD and a polydisperse PSD case. Our simulations were compared with measured solids concentrations and velocity profiles from experiments, as well as with a published Eulerian-Eulerian simulation. Overall flow patterns were similar for both simulation cases, as confirmed by experimental measurements. However, our fine-mesh CPFD simulations failed to predict a dense bottom region in the riser, as seen in other numerical studies. Above this bottom region, distributions of particle volume fraction and particle vertical velocity were consistent with our experiments, and the simulated average particle diameter decreased as a power function with riser height. Interactions between particles and walls also were successfully modeled, with accurate predictions for the lateral profiles of particle vertical velocity. It was easy to implement PSD into the CPFD numerical model, and it required fewer computational resources compared with other models, especially when particles with a polydisperse PSD were present in the heterogeneous flow.  相似文献   

6.
Particle suspension characteristics are predicted computationally in a stirred tank driven by a Smith turbine. In order to verify the hydrodynamic model and numerical method, the predicted power number and flow pattern are compared with designed values and simulated results from the literature, respectively. The effects of particle density, particle diameter, liquid viscosity and initial solid loading on particle suspension behavior are investigated by using the Eulerian–Eulerian two-fluid model and the standard k? turbulence model. The results indicate that solid concentration distribution depends on the flow field in the stirred tank. Higher particle density or larger particle size results in less homogenous distribution of solid particles in the tank. Increasing initial solid loading has an adverse impact on the homogeneous suspension of solid particles in a low-viscosity liquid, whilst more uniform particle distribution is found in a high-viscosity liquid.  相似文献   

7.
固液两相流体对直齿轮跑合热弹流润滑的影响   总被引:1,自引:0,他引:1  
建立了含有固体颗粒的接触区弹流模型,修正了Reynolds方程,考虑了润滑油对颗粒拖曳力的影响,考虑了颗粒速度随颗粒运动位置的变化,还考虑了颗粒自旋和热效应的影响,分析了颗粒运动位置变化和自旋对压力、膜厚和温度的影响,最后对算例结果进行了比较验证.结果表明:颗粒速度随颗粒运动位置变化而变化,在接触区中心附近颗粒速度趋于稳定;颗粒位于接触区中心附近时,接触区最大温度升高明显,颗粒所在区域瞬态温升较大;当颗粒靠近两啮合轮齿表面时,最小膜厚和最大温度均有所减小;颗粒顺时针自旋对最小膜厚和最大温度影响显著,顺时针自旋和逆时针自旋对接触区瞬态温升均影响较大,颗粒所在区域温度升高明显;自旋角速度增大,最小膜厚减小,最大温度升高,颗粒所在区域瞬态温升增大.  相似文献   

8.
9.
Particle-resolved direct numerical simulations of a 3-D liquid–solid fluidized bed experimentally investigated by Aguilar-Corona (2008) have been performed at different fluidization velocities (corresponding to a range of bed solid volume fraction between 0.1 and 0.4), using Implicit Tensorial Penalty Method. Particle Reynolds number and Stokes number are O(100) and O(10), respectively. In this paper, we compare the statistical quantities computed from numerical results with the experimental data obtained with 3-D trajectography and High Frequency PIV. Fluidization law predicted by the numerical simulations is in very good agreement with the experimental curve and the main features of trajectories and Lagrangian velocity signal of the particles are well reproduced by the simulations. The evolution of particle and flow velocity variances as a function of bed solid volume fraction is also well captured by the simulations. In particular, the numerical simulations predict the right level of anisotropy of the dispersed phase fluctuations and its independence of bed solid volume fraction. They also confirm the high value of the ratio between the fluid and the particle phase fluctuating kinetic energy. A quick analysis suggests that the fluid velocity fluctuations are mainly driven by fluid–particle wake interactions (pseudo-turbulence) whereas the particle velocity fluctuations derive essentially from the large scale flow motion (recirculation). Lagrangian autocorrelation function of particle fluctuating velocity exhibits large-scale oscillations, which are not observed in the corresponding experimental curves, a difference probably due to a statistical averaging effect. Evolution as a function of the bed solid volume fraction and the collision frequency based upon transverse component of particle kinetic energy correctly matches the experimental trend and is well fitted by a theoretical expression derived from Kinetic Theory of Granular Flows.  相似文献   

10.
Batch sedimentation of non‐colloidal particle suspensions is studied with nuclear magnetic resonance flow visualization and continuum‐level numerical modelling of particle migration. The experimental method gives particle volume fraction as a function of time and position, which then provides validation data for the numerical model. A finite element method is used to discretize the equations of motion, including an evolution equation for the particle volume fraction and a generalized Newtonian viscosity dependent on local particle concentration. The diffusive‐flux equation is based on the Phillips model (Phys. Fluids A 1992; 4 :30–40) and includes sedimentation terms described by Zhang and Acrivos (Int. J. Multiphase Flow 1994; 20 :579–591). The model and experiments are utilized in three distinct geometries with particles that are heavier and lighter than the suspending fluid, depending on the experiment: (1) sedimentation in a cylinder with a contraction; (2) particle flotation in a horizontal cylinder with a horizontal rod; and (3) flotation around a rectangular inclusion. Secondary flows appear in both the experiments and the simulations when a region of higher density fluid is above a lower density fluid. The secondary flows result in particle inhomogeneities, Rayleigh–Taylor‐like instabilities, and remixing, though the effect in the simulations is more pronounced than in the experiments. Published in 2007 by John Wiley & Sons, Ltd.  相似文献   

11.
A fluid dynamic model for a gas-solid circulating fluidized bed (CFB) designed using two coupled riser reactors is developed and implemented numerically with code programmed in Matlab. The fluid dynamic model contains heat and species mass balances to calculate temperatures and compositions for a carbonation/calcination loop process.Because of the high computational costs required to resolve the three-dimensional phenomena, a model representing a trade-off between computational time requirements and accuracy is developed. For dynamic processes with a solid flux between the two reactor units that depends on the fluid dynamics of both risers, a dynamic one-dimensional two-fluid model is sufficient.A two-fluid model using the constant particle viscosity closure for the stress term is used for the solid phase, and an algebraic turbulence model is applied to the gas phase. The numerical model implementation is based on the finite volume method with a staggered grid scheme. The exchange of solids between the reactor units constituting the circulating fluidized bed (solid flux) is implemented through additional mass source/sink terms in the continuity equations of the two phases.For model validation, a relevant experimental analysis provided in the literature is reproduced by the numerical simulations. The numerical analysis indicates that sufficient heat integration between the two reactor units is important for the performance of the circulating fluidized bed system.The two-fluid model performs fairly well for this chemical process operated in a CFB designed as two coupled riser reactors. Further analysis and optimization of the solution algorithms and the reactor coupling strategy is warranted.  相似文献   

12.
A fluid dynamic model for a gas-solid circulating fluidized bed (CFB) designed using two coupled riser reactors is developed and implemented numerically with code programmed in Matlab. The fluid dynamic model contains heat and species mass balances to calculate temperatures and compositions for a carbonation/calcination loop process. Because of the high computational costs required to resolve the three-dimensional phenomena, a model representing a trade-offbetween computational time requirements and accuracy is developed. For dynamic processes with a solid flux between the two reactor units that depends on the fluid dynamics of both risers, a dynamic one-dimensional two-fluid model is sufficient. A two-fluid model using the constant particle viscosity closure for the stress term is used for the solid phase, and an algebraic turbulence model is applied to the gas phase. The numerical model implementa- tion is based on the finite volume method with a staggered grid scheme. The exchange of solids between the reactor units constituting the circulating fluidized bed (solid flux) is implemented through additional mass source/sink terms in the continuity equations of the two phases, For model validation, a relevant experimental analysis provided in the literature is reproduced by the numerical simulations, The numerical analysis indicates that sufficient heat integration between the two reactor units is important for the performance of the circulating fluidized bed system, The two-fluid model performs fairly well for this chemical process operated in a CFB designed as two coupled riser reactors. Further analysis and optimization of the solution algorithms and the reactor coupling strategy is warranted.  相似文献   

13.
This paper presents an adaptive finite element method for solving incompressible turbulent flows using a k–ϵ model of turbulence. Solutions are obtained in primitive variables using a highly accurate quadratic finite element on unstructured grids. A projection error estimator is presented that takes into account the relative importance of the errors in velocity, pressure and turbulence variables. The efficiency and convergence rate of the methodology are evaluated by solving problems with known analytical solutions. The method is then applied to turbulent flow over a backward-facing step and predictions are compared with experimental measurements. © 1997 John Wiley & Sons, Ltd.  相似文献   

14.
为研究内弹道初始阶段中心点火管燃气在膛内药床中的流动特性和传播规律,设计了可视化点传火实验平台,并进行了膛内假药床的点传火实验。基于加权本质无震荡(weighted essentially non-oscillatory, WENO)格式,构造了膛内轴对称二维内弹道两相流模型,对膛内燃气在假药床中的流动过程进行数值模拟。计算结果与可视化实验结果符合较好,全局压力平均误差为5.35%。表明数值计算准确地描述了燃气流动特性,完整地呈现了点火管燃气在假药床中的发展过程。在点火初始阶段,膛内压力径向效应明显,气相沿径向传播较快,药床药粒基本不会发生运动;随着燃气逐渐在膛内传播,膛内压力呈现径向一致、轴向梯度分布的特征,在压力梯度作用下,气相轴向速度开始占据主导,径向速度在膛底和中部区域减小为零,而固相速度随气相速度变化而变化;气相在到达弹底前,由于固相颗粒的壅塞,会提前出现速度反向波动现象。  相似文献   

15.
This paper deals with the numerical solution, using finite difference methods, of the hydrodynamic and turbulence energy equations which describe wind wave and tidally induced flow. Calculations are performed using staggered and non-staggered finite difference grids in the vertical, with various time discretizations of the production and dissipation terms in the turbulence energy equations. It is shown that the time discretization of these terms can significantly influence the stability of the solution. The effect of time filtering on the numerical stability of the solution is also considered. The form of the mixing length is shown to significantly influence the bed stress in wind wave problems. A no-slip condition is applied at the sea bed, and the associated high-shear bottom boundary layer is resolved by transforming the equations onto a logarithmic or log-linear co-ordinate system before applying the finite difference scheme. A computationally economic method is developed which remains stable even when a very fine vertical grid (over 200 points) is used with a time step of up to 30 min.  相似文献   

16.
The calculation of settling speed of coarse particles is firstly addressed, with accelerated Stokesian dynamics without adjustable parameters, in which far field force acting on the particle instead of particle velocity is chosen as dependent variables to consider inter-particle hydrodynamic interactions. The sedimentation of a simple cubic array of spherical particles is simulated and compared to the results available to verify and validate the numerical code and computational scheme. The improved method keeps the same computational cost of the order O(NlogN) as usual accelerated Stokesian dynamics does. Then, more realistic random suspension sedimentation is investigated with the help of Mont Carlo method. The computational results agree well with experimental fitting. Finally, the sedimentation of finer cohesive particle, which is often observed in estuary environment, is presented as a further application in coastal engineering.  相似文献   

17.
Data reconciliation considers the restoration of mass balance among the noise prone measured data by way of component adjustments for the various particle size or particle density classes or assays over the separating node. In this paper, the method of Lagrange multipliers has been extended to balance bivariate feed and product size-density distributions of coal particles split from a settling column. The settling suspension in the column was split into two product fractions at 40% height from the bottom after a minute settling of homogenized suspension at start. Reconciliation of data assists to estimate solid flow split of particles to the settled stream as well as helps to calculate the profiles of partition curves of the marginal particle size or particle density distributions. In general, Lagrange multiplier method with uniform weighting of its components may not guarantee a smooth partition surface and thus the reconciled data needs further refinement to establish the nature of the surface. In order to overcome this difficulty, a simple alternative method of reconciling bivariate size-density data using partition surface concept is explored in this paper.  相似文献   

18.
A numerical model based on the smoothed particle hydrodynamics method is developed to simulate depth‐limited turbulent open channel flows over hydraulically rough beds. The 2D Lagrangian form of the Navier–Stokes equations is solved, in which a drag‐based formulation is used based on an effective roughness zone near the bed to account for the roughness effect of bed spheres and an improved sub‐particle‐scale model is applied to account for the effect of turbulence. The sub‐particle‐scale model is constructed based on the mixing‐length assumption rather than the standard Smagorinsky approach to compute the eddy‐viscosity. A robust in/out‐flow boundary technique is also proposed to achieve stable uniform flow conditions at the inlet and outlet boundaries where the flow characteristics are unknown. The model is applied to simulate uniform open channel flows over a rough bed composed of regular spheres and validated by experimental velocity data. To investigate the influence of the bed roughness on different flow conditions, data from 12 experimental tests with different bed slopes and uniform water depths are simulated, and a good agreement has been observed between the model and experimental results of the streamwise velocity and turbulent shear stress. This shows that both the roughness effect and flow turbulence should be addressed in order to simulate the correct mechanisms of turbulent flow over a rough bed boundary and that the presented smoothed particle hydrodynamics model accomplishes this successfully. © 2016 The Authors International Journal for Numerical Methods in Fluids Published by John Wiley & Sons Ltd  相似文献   

19.
Single point turbulence statistics measured directly above and in close proximity to the wall in a fully developed, fully rough, turbulent open channel flow are reported. In order to investigate the spatial inhomogeneity of the turbulence, the measurements were obtained over a matrix of measurement points in a plane parallel to the roughness-bed surface. The measurements were obtained with a three-component laser Doppler velocimeter (3D-LDV) system. The turbulence statistics associated with the vertical velocity component, including conditioned mean vertical velocities, rms distributions, and mean vertical momentum fluxes are emphasized. For the Reynolds and Froude numbers associated with this investigation, and with the specific roughness geometry employed in this study (a packed bed of uniform-diameter spheres), it is found that the distribution of the local mean vertical velocity, <w>, has non-zero contributions over the roughness pattern and that this contributes to a mean net vertical momentum flux into the roughness bed. However, the net vertical momentum flux due to turbulent fluctuations is positive out of the bed, consistent with smooth-wall behavior. These results are relevant to the study of sediment entrainment and suspension/deposition as well as the exchange and transport of chemical species between the channel core flow and the fluid within the roughness bed. Received: 21 July 1998/Accepted: 20 November 1999  相似文献   

20.
The particle dispersion characteristics in a confined swirling flow with a swirl number of approx. 0.5 were studied in detail by performing measurements using phase-Doppler anemometry (PDA) and numerical predictions. A mixture of gas and particles was injected without swirl into the test section, while the swirling airstream was provided through a co-flowing annular inlet. Two cases with different primary jet exit velocities were considered. For these flow conditions, a closed central recirculation bubble was established just downstream of the inlet.

The PDA measurements allowed the correlation between particle size and velocity to be obtained and also the spatial change in the particle size distribution throughout the flow field. For these results, the behaviour of different size classes in the entire particle size spectrum, ranging from about 15 to 80 μm, could be studied, and the response of the particles to the mean flow and the gas turbulence could be characterized. Due to the response characteristics of particles with different diameters to the mean flow and the flow turbulence, a considerable separation of the particles was observed which resulted in a streamwise increase in the particle mean number diameter in the core region of the central recirculation bubble. For the lower particle inlet velocity (i.e. low primary jet exit velocity), this effect is more pronounced, since here the particles have more time to respond to the flow reversal and the swirl velocity component. This also gave a higher mass of recirculating particle material.

The numerical predictions of the gas flow were performed by solving the time-averaged Navier-Stokes equations in connection with the well known kε turbulence model. Although this turbulence model is based on the assumption of isotropic turbulence, the agreement of the calculated mean velocity profiles compared to the measured gas velocities is very good. The gas-phase turbulent kinetic energy, however, is considerably underpredicted in the initial mixing region. The particle dispersion characteristics were calculated by using the Lagrangian approach, where the influence of the particulate phase on the gas flow could be neglected, since only very low mass loadings were considered. The calculated results for the particle mean velocity and the mass flux are also in good agreement with the experiments. Furthermore, the change in the particle mean diameter throughout the flow field was predicted approximately, which shows that the applied simple stochastic dispersion model also gives good results for such very complex flows. The variation of the gas and particle velocity in the primary inlet had a considerable impact on the particle dispersion behaviour in the swirling flow and the particle residence time in the central recirculation bubble, which could be determined from the numerical calculations. For the lower particle inlet velocity, the maximum particle size-dependence residence time within the recirculation region was considerably shifted towards larger particles.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号