共查询到20条相似文献,搜索用时 15 毫秒
1.
Four problems of fluid flow and heat transfer were designed in which non-orthogonal, boundary-fitted grids were to be used. These are proposed to serve as test cases for testing new solution methods. This paper presents solutions of the test problems obtained by using a multigrid finite volume method with grids of up to 320 × 320 control volumes. Starting from zero fields, iterations were performed until the sum of the absolute residuals had fallen seven orders of magnitude, thus ensuring that the variable values did not change to six most significant digits. By comparing the solutions for successive grids at moderate Reynolds and Rayleigh numbers, the discretization errors were estimated to be lower than 0·1%. The results presented in this paper may thus serve for comparison purposes as bench-mark solutions. 相似文献
2.
A new finite volume (FV) approach with adaptive upwind convection is used to predict the two-dimensional unsteady flow in a square cavity. The fluid is air and natural convection is induced by differentially heated vertical walls. The formulation is made in terms of the vorticity and the integral velocity (induction) law. Biquadratic interpolation formulae are used to approximate the temperature and vorticity fields over the finite volumes, to which the conservation laws are applied in integral form. Image vorticity is used to enforce the zero-penetration condition at the cavity walls. Unsteady predictions are carried sufficiently forward in time to reach a steady state. Results are presented for a Prandtl number (Pr) of 0-71 and Rayleigh numbers equal to 103, 104 and 105. Both 11 × 11 and 21 × 21 meshes are used. The steady state predictions are compared with published results obtained using a finite difference (FD) scheme for the same values of Pr and Ra and the same meshes, as well as a numerical bench-mark solution. For the most part the FV predictions are closer to the bench-mark solution than are the FD predictions. 相似文献
3.
Laminar natural convection has been studied in a laterally heated vertical cylindrical enclosure with a free insulated surface
and a centrally located constant temperature wall at the top. These conditions are a simplification of the conditions existing
in a Czochralski crystal pulling system. The laminar, axisymmetric flow of a Newtonian, constant physical properties fluid
under Boussinesq’s approximation has been considered. Governing equations in primitive variable form are solved numerically
by control volume method. SIMPLE algorithm due to Patankar has been used for the numerical simulation. The effects of the
constant wall heat flux boundary condition at the side wall have been investigated whereas the bottom wall is considered to
be insulated. Streamlines and isotherms are presented for various Rayleigh numbers and Prandtl numbers. Heat flux vectors
through the melt are plotted for selected cases. The axial velocity and temperature variations at different horizontal sections
of the crucible have been presented graphically to explain the transport processes inside the crucible. It has been observed
that in case of low Pr and high Ra, flow separation occurs at the vertical wall of the crucible which leads to an oscillatory flow as Ra increases. The investigation has been extended to the oscillatory regime of flow in the zone of supercritical Rayleigh numbers
and some unsteady results are also presented. Finally a heat transfer correlation has been developed for steady-state case. 相似文献
4.
A high-resolution, finite difference numerical study is reported on three-dimensional natural convection of air in a differentially heated cubical enclosure over an extensive range of Rayleigh number from 103 to 1010. The maximum number of grid points is 122 × 62 × 62. Solutions to the primitive variable formulation of the incompressible Navier-Stokes and energy equations are acquired by a control-volume-based procedure together with a higher-order upwind-differencing technique. The field characteristics at large-time limits are examined in detail by state-of-the-art numerical visualizations of the three-dimensional results. The emergence of the well-defined boundary layers and the interior core at high Rayleigh numbers is captured by elaborate numerical visualizations. Both the similarities and discrepancies between the three- and two-dimensional computations are pointed out. These emphasize the need for three-dimensional calculations to accurately determine the flow characteristics and heat transfer properties in realistic, high-Rayleigh-number situations. 相似文献
5.
Keith H. Winters 《国际流体数值方法杂志》1988,8(3):247-281
Finite element predictions of two-dimensional laminar natural convection in a partially divided rectangular cavity at high Rayleigh number are presented. The walls are differentially heated, the horizontal surfaces are insulated and the cavity contains a partial vertical divider which is centrally located and whose height is varied. Detailed results are presented for an aluminium half-divider in water for Rayleigh number up to 1011 and compared directly with recent experiments in a cavity of aspect ratio 1/2. The predicted flow and heat transfer are in good agreement with the measurements and confirm the existence of a high Rayleigh number regime with characteristic behaviour that differs significantly from that found at lower Rayleigh number. In addition, the effects of the divider height, the divider conductivity, the fluid Prandtl number and the cavity aspect ratio are studied. The results show that a direct simulation of the complex flow and heat transfer that occurs in partially divided cavities is possible for realistic physical conditions. 相似文献
6.
A finite volume numerical method for the prediction of fluid flow and heat transfer in simple geometries was parallelized using a domain decomposition approach. The method is implicit, uses a colocated arrangement of variables and is based on the SIMPLE algorithm for pressure-velocity coupling. Discretization is based on second-order central difference approximations. The algebraic equation systems are solved by the ILU method of Stone.1 To accelerate the convergence, a multigrid technique was used. The efficiency was examined on three different parallel computers for laminar flow in a pipe with an orifice and natural convection in a closed cavity. It is shown that the total efficiency is made up of three major factors: numerical efficiency, parallel efficiency and load-balancing efficiency. The first two factors were thoroughly investigated, and a model for predicting the parallel efficiency on various computers is presented. Test calculations indicate reasonable total efficiency and favourable dependence on grid size and the number of processors. 相似文献
7.
This paper describes a numerical method for the study of combined natural convection and radiation in a rectangular, two-dimensional cavity containing a non-participating (i.e. transparent) fluid. One wall of the cavity is isothermal, being heated either by solar radiation or independently. The opposite wall is partially transparent, permitting radiation exchanges between the cavity and its surroundings and/or the Sun; that wall also exchanges heat by convection from its external surface to the surroundings. The other two walls are adiabatic: convection and radiation there are balanced, so that there is no heat transfer through those walls. The equations of motion and energy are solved by finite difference methods. Coupled to these equations are the radiative flux boundary conditions which are used to determine the temperature distribution along the non-isothermal walls. A two-band radiation model has been employed. Results are presented for a square cavity with a vertical hot wall at 150 °C, the ambient at 20 °C and 104 ? Ra ? 3 × 105, in the absence of direct insolation. The effects on the flow and heat transfer in the cavity of radiation and external convection have been examined. More extensive results will be presented in subsequent papers. 相似文献
8.
Atsuhide Kitagawa Kenji Uchida Yoshimichi Hagiwara 《International Journal of Heat and Fluid Flow》2009,30(4):778-788
Injection of sub-millimeter bubbles is considered a promising technique for enhancing natural convection heat transfer for liquids. So far, we have experimentally investigated heat transfer characteristics of laminar natural convection flows with sub-millimeter bubbles. However, the effects of the bubble size on the heat transfer have not yet been understood. The purpose of this study is to clarify the effects of the bubble size on the heat transfer enhancement for the laminar natural convection of water along a vertical heated plate with uniform heat flux. Temperature and velocity measurements, in which thermocouples and a particle tracking velocimetry technique are, respectively used, are conducted to investigate heat transfer and flow characteristics for different bubble sizes. Moreover, two-dimensional numerical simulations are performed to comprehensively understand the effects of bubble injection on the flow near the heated plate. The result shows that the ratio of the heat transfer coefficient with sub-millimeter-bubble injection to that without injection ranges from 1.3 to 2.2. The result also shows that for a constant bubble flow rate, the heat transfer coefficient ratio increases with a decrease in the mean bubble diameter. It is expected from our estimation based on both experimental data and simulation results that this increase results from an increase in the advection effect due to bubbles. 相似文献
9.
The nodal integral method is a relatively new numerical technique that has been used recently to solve both static and dynamic multidimensional problems in heat transfer, fluid flow and neutron transport. The method offers significant advantages in terms of stability, accuracy and efficiency over conventional finite elements when the problem can be adequately modelled in Cartesian co-ordinates. This method was used to investigate bifurcation phenomena in the Bénard problem for aspect ratios in the range of one to nine. Automatic search techniques were used with a static version to find the first four critical Rayleigh values for a square cavity, to map the first two critical Rayleigh values as a function of aspect ratio, and to examine the solution types. Accuracy enhancement was obtained by factorization and extrapolation. Critical values, obtained by interpolation, were verified dynamically. Aspect ratio crossover and transition values were found for the first two critical Rayleigh numbers, with an accuracy of the order of ±3 per cent. The precision achieved in the results for Ra* and Ra** as a function of β is usually within 0.1%–0.2% except at high β (i.e. near β=9.0) and at large critical values of Ra (i.e. the first few values of Ra** near β=1). Specific results at β=1.0 are Ra*=2584±0.5, Ra**=6807, Ra3* = 19 734 and Ra4*=22 586. 相似文献
10.
Numerical simulations have been carried out to investigate the unsteady natural convection flow in a cavity subjected to a sidewall heat flux varying sinusoidally with time. With all walls non-slip and the upper and lower boundaries and the other sidewall adiabatic, the heating and cooling produces an alternating direction natural convection boundary layer that discharges hot fluid to the top and cold fluid to the bottom of the cavity, generating a time-varying thermal stratification in the cavity interior. Scaling analysis has been conducted for different flow regimes based on the forcing frequency, with the characteristic time scales being the forcing period and the boundary layer development time. The scaling relations are then verified using the simulations, with the results showing overall good agreement with the derived scaling relations. 相似文献
11.
An analysis is performed to study transient free convective boundary layer flow of a couple stress fluid over a vertical cylinder, in the absence of body couples. The solution of the time-dependent non-linear and coupled governing equations is carried out with the aid of an unconditionally stable Crank-Nicolson type of numerical scheme. Numerical results for the steady-state velocity, temperature as well as the time histories of the skin-friction coefficient and Nus- selt number are presented graphically and discussed. It is seen that for all flow variables as the couple stress control parameter, Co, is amplified, the time required for reaching the temporal maximum increases but the steady-state decreases. 相似文献
12.
An analysis is performed to study transient free convective boundary layer flow of a couple stress fluid over a vertical cylinder, in the absence of body couples. The solution of the time-dependent non-linear and coupled governing equations is carried out with the aid of an unconditionally stable Crank–Nicolson type of numerical scheme. Numerical results for the steady-state velocity, temperature as well as the time histories of the skin-friction coefcient and Nusselt number are presented graphically and discussed. It is seen that for all flow variables as the couple stress control parameter, Co, is amplified, the time required for reaching the temporal maximum increases but the steady-state decreases. 相似文献
13.
14.
A three-dimensional numerical investigation of steady laminar natural convection in vented enclosures is carried out. A discrete flush-type heat source mounted on the substrate is used to simulate an electronic component. Four different vent locations are investigated. Combined natural convection in the air and conduction in the heat source, the substrate, and the enclosure walls are solved. Solutions are obtained for Rayleigh numbers ranging from 104 to 106, different substrate thermal conductivity ratios, and varied vent sizes. The calculation domain is extended beyond the cubic enclosure in x-, y-, and z-directions. Appropriate boundary conditions are prescribed on the extended computational domain. The resulting flow and temperature patterns are discussed. Also, the local and overall heat transfer from the heat source and the substrate, in terms of Nusselt numbers and the surface temperatures, are presented to illustrate the vent effects. 相似文献
15.
16.
Joo-Sik Yoo 《International Journal of Heat and Fluid Flow》1996,17(6):587-593
Dual steady solutions in natural convection in an annulus between two horizontal concentric cylinders are numerically investigated for a fluid of Prandtl number 0.7. It is found that, when the Rayleigh number based on the gap width exceeds a certain critical value, dual steady two-dimensional (2-D) flows can be realized: one being the crescent-shaped eddy flow commonly observed and the other the flow consisting of two counter-rotating eddies and their mirror images. The critical Rayleigh number decreases as the inverse relative gap width increases. 相似文献
17.
A penalty function, finite volume method is described for two-dimensional laminar and turbulent flows. Turbulence is modelled using the k-? model. The governing equations are discretized and the resulting algebraic equations are solved using both sequential and coupled methods. The performance of these methods is gauged with reference to a tuned SIMPLE-C algorithm. Flows considered are a square cavity with a sliding top, a plane channel flow, a plane jet impingement and a plane channel with a sudden expansion. A sequential method is employed, which uses a variety of dicretization practices, but is found to be extremely slow to converge; a coupled method, evaluated using a variety of matrix solvers, converges rapidly but, relative to the sequential approach, requires larger memory. 相似文献
18.
The transient convective motion in a two-dimensional square cavity driven by a temperature gradient is analysed. The cavity is filled with a low-Prandtl-number fluid and the vertical walls are maintained at constant but different temperatures, while the horizontal boundaries are adiabatic. A control volume approach with a staggered grid is employed to formulate the finite difference equations. Numerically accurate solutions are obtained for Prandtl numbers of 0·001, 0·005 and 0·01 and for Grashof numbers up to 1 × 107. It was found that the flow field exhibits periodic oscillation at the critical Grashof numbers, which are dependent on the Prandtl number. As the Prandtl number is decreased, the critical Grashof number and the frequency of oscillation decrease. Prior to the oscillatory flow, steady state solutions with an oscillatory transient period were predicted. In addition to the main circulation, four weak circulations were predicted at the corners of the cavity. 相似文献
19.
Jeff Chak-Fu Wong Peng Yuan 《International Journal of Computational Fluid Dynamics》2013,27(10):657-671
This paper describes a numerical approximation scheme for the natural convection (NC) flow in a fluid-saturated porous medium. Our formulation of the problem is based on the mixed finite element method (FEM). Using the so-called consistent splitting scheme, a second-order accuracy in time and in space is verified by the numerical calculation. The resulting flow patterns and heat transfer for different Rayleigh numbers, Darcy numbers and porosities are numerically studied by the proposed scheme. 相似文献
20.
A. Rodríguez-SevillanoI. Pérez-Grande J. Meseguer 《Experimental Thermal and Fluid Science》2011,35(1):68-72
The problem of determination of the turbulence onset in natural convection on heated inclined plates in an air environment has been experimentally revisited. The transition has been detected by using hot wire velocity measurements. The onset of turbulence has been considered to take place where velocity fluctuations (measured through turbulence intensity) start to grow. Experiments have shown that the onset depends not only on the Grashof number defined in terms of the temperature difference between the heated plate and the surrounding air. A correlation between dimensionless Grashof and Reynolds numbers has been obtained, fitting quite well the experimental data. 相似文献