首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New linear triblock thermoplastic elastomers (TPEs) comprising a rubbery polyisobutylene (PIB) midblock flanked by two glassy endblocks of various styrenic polymers have been synthesized by living carbocationic polymerization by sequential monomer addition. First isobutylene (IB) was polymerized by a bifunctional tert-ether (dicumyl methyl ether) initiator in conjunction with TiCl4 coinitiator in CH3Cl/methylcyclohexane (MeCHx) (40/60 v/v) solvent mixtures at ?80°C. After the living narrow molecular weight distribution PIB midblock ( = 1.1–1.2) has reached the desired molecular weight, the styrenic monomers together with an electron pair donor (ED) and a proton trap (di-tert-butylpyridine, DtBP) were added to start the blocking of the glassy segments from the living ⊕PIB⊕ chain ends. While p-methylstyrene (pMeSt), p-t-butylstyrene (ptBuSt) and indene (In) gave essentially 100% blocking to the corresponding glassy endblocks, the blocking of 2,4,6-trimethylstyrene (TMeSt) and α-methylstyrene (αMeSt) were ineffective. Uncontrolled initiation by protic impurities was prevented by the use of DtBP. In the simultaneous presence of DtBP and the strong ED N,N-dimethylacetamide (DMA), TPEs with good mechanical properties (10–20 MPa tensile strength, 300–600% elongation) were prepared. The products exhibit a low and a high temperature Tg characteristic of phase separated rubbery and glassy domains. The service temperature of these new TPEs exceeds that of PSt–PIB–PSt triblock copolymers due to the higher Tgs (PpMeSt = 108, PptBuSt = 142 and PIn = 220–240°C) of the outer blocks. The Tg of the glassy blocks can be regulated by copolymerizing two styrene derivatives; a triblock copolymer with outer blocks of poly(pt-butylstyrene-co-indene) showed a single glassy transition Tg = +165°C, i.e., in between that of PptBuSt and PIn. Virgin TPEs have been repeatedly compression molded without deterioration of physical properties. The high melt flow index obtained with a TPE containing PptBuSt endblocks suggests superior processability relative to those with PSt end-blocks. The tensile strength retention at 60°C of the former TPE is far superior to that of a PSt–PIB–PSt triblock of similar composition.  相似文献   

2.
Novel thermoplastic elastomers (TPEs) consisting of poly(isobutylene‐b‐indene) (PIB‐b‐PInd) arms radiating from hexamethylcyclohexasiloxane (D) cores were prepared, characterized, and their properties investigated. The syntheses of these star‐blocks involved the linking by hydrosilation of PInd‐b‐PIB CH2 CHCH2 prearms to D. The prearms were obtained by initiating the living polymerization of Ind by the cumyl chloride (CumCl)/TiCl4 or cumyl methoxide (CumOMe)/TiCl4 systems, continuing by the sequential block copolymerization of IB, and concluding the synthesis by end quenching with allyltrimethylsilane (ATMS). Dedicated experiments were carried out to develop conditions for the various synthesis steps. Select mechanical, thermal, and rheological properties of TPE star‐blocks having 5–18 PInd‐b‐PIB arms have been investigated. Because of the high Tg of the glassy PInd segment (Tg,PInd = 170–220°C), these TPEs maintained their strength at higher temperatures than those of similar polystyrene‐based star blocks. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 279–290, 2000  相似文献   

3.
Preparatory to triblock synthesis experiments, the cationic polymerization of α-methylstyrene (αMeSt) was investigated using the 2-chloro-2,4,4-trimethylpentane (TMPCI)/TiCl4 initiating system in the presence of triethylamine (Et3N) as electron donor (ED) and CH3Cl/n-hexane mixed solvent in the ?80 to ?40°C range. Conversions are influenced by temperature, [TiCl4], [Et3N], and [αMeSt]. The polymerization of αMeSt is living at ?80°C: Both termination and chain transfer to monomer are frozen out, however, initiation is slow relative to propagation. Highly syndiotactic (>94%) Pα Mest was obtained. At?60deg;C initiator efficiency is ca. 100%, but termination becomes evident. Et3N may act both as Ed and as proton scavenger. Novel poly(α-methystyrene-b-isobutylene-b-α-methylstyrene) (PαMeSt-PIB-PαMeSt) triblocks have been synthesized by adding αMeSt to biliving polyisobutylene carbocations (⊕PIB⊕) in the ?80 to ?40°C range. The effects of temperature, solvent polarity, and [Et3N] on the block copolymerization have been investigated. At ?80°C, the rate of crossover from ⊕PIB⊕ to αMeSt is lower than that of propagation of PαMeSt⊕, so that the triblock is contaminated by PIB and PIB-b-PαMeSt. At ?60°C, crossover occurs preferentially. The rate of propagation relative to that of crossover is also reduced by lowering the solvent polarity and increasing the [Et3N]. High crossover efficiency and blocking efficiency can be obtained under optimum blocking conditions. The triblocks are novel thermoplastic elastomers (TPEs). © 1994 John Wiley & Sons, Inc.  相似文献   

4.
Abstract

Novel thermoplastic elastomers (TPEs) consisting of a central rubbery polyisobutylene (PIB) segment flanked by two glassy outer segments comprising indene (Ind)-co-p-methylstyrene (pMeSt) random copolymers have been prepared. The synthesis was effected by sequential monomer addition in one reactor: The process starts by the biliving homopolymerization of isobutylene (IB) and yields the living dication +PIB+; the latter, upon the introduction of Ind/pMeSt mixtures, induces the living copolymerization of these monomers and yields the target TPE P(Ind-co-pMeSt)-b-PIB-b-P(Ind-co-pMeSt) triblock. The length of the rubbery midblock and the composition of the Ind-co-pMeSt random copolymer outer blocks (i.e., the overall composition of the triblocks) can be readily controlled. The glass transition temperature (Tg ) of the outer blocks can be fine-tuned by controlling the relative Ind/ pMeSt composition. The triblocks are excellent TPEs; for example, a P(Ind-co-pMeSt)-b-PIB-b-P(Ind-co-pMeSt) of M n ≈ 115,000 g/mol containing a PIB midblock of M n ≈ 70,200 g/mol and glassy copolymer outer blocks of P(Ind-co-pMeSt) [Ind/pMeSt = 41/59 (w/w)] exhibited 23.4 MPa tensile strength and 460% elongation. Tensile strengths and 300% moduli increase with the relative amount of the glassy segment present. Hardness increases with increasing Ind content.  相似文献   

5.
New linear and three-arm star thermoplastic elastomers (TPEs) comprising a rubbery polysobutylene (PIB) midblock flanked by glass polystyrene (PSt) blocks have been synthesized by living carbocationic polymerization in the presence of select additives by sequential monomer addition. First, isobutylene (IB) was polymerized by bi- and trifunctional tert-ether (dicumyl- and tricumyl methoxy) initiators in conjunction with TiCl4 conintiator in CH3Cl/methylcyclohexane (MeCHx) (40/60 v/v) solvent mixtures at ?80°C. After the living, narrow molecular weight, distribution PIB (M?w/M?n = 1.1-1.2) has reached the desired molecular weight, styrene (St) together with an electron pair donor (ED) and a proton trap (di-tert-butylpyridine, DtBP) were added to block PSt from the living chain ends. Uncontrolled initiation by protic impurities that produces PSt contamination is prevented by the use of DtBP. PSt-PIB-PSt blocks obtained in the absence of additives are contaminated by homopolymer and /or diblocks due to inefficient blocking and initiation by protic impurities, and exhibit poor physical properties. In contrast in the presence of the strong ED N,N-dimethylacetamide (DMA) and DtBP the blocking of St from living PIB chain occurs efficiently and block copolymers exhibiting good mechanical properties can be prepared. Virgin TPEs can be repeatedly compression molded without deterioration of physical properties. The products exhibit a low and a high temperature Tg characteristic of phase separated PIB and PSt domains. Transmission electron microscopy of linear triblocks containing ~ 34 wt % PSt also indicates microphase separation and suggests PSt rods dispersed in a PIB matrix.  相似文献   

6.
Poly(styrene-b-isobutylene-b-styrene) has been synthesized by sequential carbocationic polymerization under quasiliving conditions at -90°C. The quasiliving synthesis was effected by first continuously and slowly condensing gaseous isobutylene (IB) to a bifunctional initiating system (p-dicumyl chloride/TiCl4) dissolved in a hexane-methylene chloride (60:40 v/v) mixture. After the quasiliving polyisobutylene (PIB) sequence had reached a desired molecular weight, styrene (St) was continuously and slowly added to produce the polystyrene (PSt) sequence. The products consisted of the target triblock. However, due to initiation by impurities and possibly to chain transfer to both IB and St, it also contained diblocks and small amounts of homopolymers. While the latter could be removed by selective fractionation, the triblocks and diblocks could not be separated. The mechanism of quasiliving polymerization leading to PIB/PSt blocks is discussed.  相似文献   

7.
ABCBA‐type pentablock copolymers of methyl methacrylate, styrene, and isobutylene (IB) were prepared by the cationic polymerization of IB in the presence of the α,ω‐dichloro‐PS‐b‐PMMA‐b‐PS triblock copolymer [where PS is polystyrene and PMMA is poly(methyl methacrylate)] as a macroinitiator in conjunction with diethylaluminum chloride (Et2AlCl) as a coinitiator. The macroinitiator was prepared by a two‐step copper‐based atom transfer radical polymerization (ATRP). The reaction temperature, ?78 or ?25 °C, significantly affected the IB content in the resulting copolymers; a higher content was obtained at ?78 °C. The formation of the PIB‐b‐PS‐b‐PMMA‐b‐PS‐b‐PIB copolymers (where PIB is polyisobutylene), prepared at ?25 (20.3 mol % IB) or ?78 °C (61.3 mol % IB; rubbery material), with relatively narrow molecular weight distributions provided direct evidence of the presence of labile chlorine atoms at both ends of the macroinitiator capable of initiation of cationic polymerization of IB. One glass‐transition temperature (Tg), 104.5 °C, was observed for the aforementioned triblock copolymer, and the pentablock copolymer containing 61.3 mol % IB showed two well‐defined Tg's: ?73.0 °C for PIB and 95.6 °C for the PS–PMMA blocks. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3823–3830, 2005  相似文献   

8.
Two structurally closely related three‐arm star blocks were synthesized and characterized: tCum(PIB‐b‐PNBD)3 and tCum(PNBD‐b‐PIB)3 [where tCum (tricumyl) stands for the phenyl‐1,3,5‐tris(‐2‐propyl) fragment and PIB and PNBD are polyisobutylene and polynorbornadiene, respectively]. The syntheses were accomplished in two stages: (1) the preparation of the first (or inner) block fitted with appropriate chlorine termini capable of initiating the polymerization of the second (or outer) block with TiCl4 and (2) the mediation of the polymerization of the second block. Therefore, the synthesis of tCum(PIB‐b‐PNBD)3 was effected with tCum(PIB‐Clt)3 [where Clt is tert‐chlorine and number‐average molecular weight (Mn) = 102,000 g/mol] by the use of TiCl4 and 30/70 CH3Cl/CHCl3 solvent mixtures at ?35 °C. PNBD homopolymer contamination formed by chain transfer was removed by selective precipitation. According to gel permeation chromatography, the Mn's of the star blocks were 107,300–109,200 g/mol. NMR spectroscopy (750 MHz) was used to determine structures and molecular weights. Differential scanning calorimetry (DSC) indicated two glass‐transition temperatures (Tg's), one each for the PIB (?65 °C) and PNBD (232 °C) phases. Thermogravimetric analysis thermograms showed 5% weight losses at 293 °C in air and at 352 °C in N2. The synthesis of tCum(PNBD‐b‐PIB)3 was achieved by the initiation of isobutylene polymerization with tCum(PNBD‐Clsec)3 (where Clsec is sec‐chlorine and Mn = 2900 g/mol) by the use of TiCl4 in CH3Cl at ?60 °C. DSC for this star block (Mn = 14,200 g/mol) also showed two Tg's, that is, at ?67 and 228 °C for the PIB and PNBD segments, respectively. It is of interest that the Clsec terminus of PNBD, , readily initiated isobutylene polymerization. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 740–751, 2003  相似文献   

9.
Nylon 6–PIB diblock, triblock, and tristar radial block copolymers have been synthesized from telechelic hydroxyl-terminated polyisobutylene, PIB(OH)n (n = 1,2,3), by conversion of this prepolymer with hexamethylene diisocyanate (HMDI), toluene diisocyanate (TDI), N-chlorocarbonyl diisocyanate (NCCI), and oxalyl chloride (OxCl) and using the resulting materials as macroactivators for anionic caprolactam polymerization. Prepolymers with molecular weights from 6000 to 38,000 have been employed. Derivatization with NCCI and subsequent anionic caprolactam polymerization gave highest yields and blocking efficiencies. The block copolymers have been characterized by molecular weight and composition. In addition to the expected Tg and Tm characteristics of long PIB and nylon 6 segments, DSC studies showed an intermediate glass transition at ca. ?20°C. Transmission electron microscopy of di-, tri-, and radial blocks show increasing segregation and orientation of rubbery/crystalline domains. Tensile strengths and elongations of the block copolymers range from 16.5 to 41 MPa and 15 to 30%, respectively, and stress-strain diagrams show the effect of block architecture on these properties.  相似文献   

10.
1-Chloro-1-phenylethyl-telechelic polyisobutylene (PIB) was synthesized by living carbocationic polymerization (LCCP). LCCP of isobutylene was induced by a difunctional initiator in conjunction with TiCl4 as coinitiator in the presence of N,N-dimethylacetamide in CH2Cl2/hexane (40:60 v/v) solvent mixture at −78°C. After complete isobutylene conversion a small amount of styrene was added leading to a rapid crossover reaction and thus to the attachment of short outer polystyrene (PSt) blocks to the PIB segment. Quenching the living polymerization of styrene yielded 1-chloro-1-phenylethyl terminal groups. The resulting telechelic polymer (Cl-PSt-PIB-PSt-Cl) is a potential new macroinitiator for atom transfer radical polymerization of a variety of vinyl monomers.  相似文献   

11.
The polymerization of p-chlorostyrene (pClSt) under carbocationic conditions has been investigated. The use of binifers 1,4-di(2-chloro-2-propyl) benzene (pDCC) and 1,3-di(2-chloro-2-propyl)-5-tert-butylbenzene (m-tBuDCC) in conjunction with BCl3 coinitiator in CH3Cl diluent at ?60 and ?35°C give α,ω-di-benzylic chlorine-capped polymer sCl? PpClSt? Cls. According to kinetic investigations the inifer mechanism is operative and both binifers are efficient in controlling the end structures, molecular weights, and to a certain extent molecular weight distributions (MWD). Strong circumstantial evidences have been generated to demonstrate the satisfactory synthesis of sCl? PpClSt? Cls and the absence of indanyl end-groups, i.e., structural considerations, linearity of inifer plots, quantitative Cl end-group microanalysis, FTIR spectroscopy, and blocking experiments. The latter involved the blocking of THF from the sec-benzylic chlorine end-groups by AgPF6 and thus led to the synthesis of a new triblock copolymer PTHF-b-PpClSt-b-PTHF. Interestingly, the isotactic content (mm triads and mmmm pentads) of PpClSt is significantly higher than that of polymer prepared by free-radical induced polymerization. The Tg of a PpClSt of M?n = 5700 g/mol was 123°C.  相似文献   

12.
The synthesis of novel arborescent (arb; randomly branched, “tree‐like,” and often called “hyperbranched”) block copolymers comprised of rubbery polyisobutylene (PIB) and glassy polystyrene (PSt) blocks (arb‐PIB‐b‐PSt) is described. The syntheses were accomplished by the use of arb‐PIB macroinitiators (prepared by the use of 4‐(2‐methoxyisopropyl) styrene inimer) in conjunction with titanium tetrachloride (TiCl4). The effect of reaction conditions on blocking of St from arb‐PIB was investigated. Purified block copolymers were characterized by 1H NMR spectroscopy and Size Exclusion Chromatography (SEC). arb‐PIB‐b‐PSt with 11.7–33.8 wt % PSt and Mn = 468,800–652,900 g/mol displayed thermoplastic elastomeric properties with 3.6–8.7 MPa tensile strength and 950–1830% elongation. Samples with 26.8–33.8 wt % PSt were further characterized by Atomic Force Microscopy (AFM), which showed phase‐separated mixed spherical/cylindrical/lamellar PSt phases irregularly distributed within the continuous PIB phase. Dynamic Mechanical Thermal Analysis (DMTA) and solvent swelling of arb‐PIB‐b‐PSt revealed unique characteristics, in comparison with a semicommercial PSt‐b‐PIB‐b‐PSt block copolymer. The number of aromatic branching points of the arb‐PIB macroinitiator, determined by selective destruction of the linking sites, agreed well with that calculated from equilibrium swelling data of arb‐PIB‐b‐PSt. This method for the quantitative determination of branching sites might be generally applicable for arborescent polymers. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1811–1826, 2005  相似文献   

13.
The synthesis together with mechanical property and rheological characterization of novel star–block copolymers comprising multiple polystyrene (PSt)-b-polyisobutylene (PIB) arms emanating from polydivinylbenzene (PDVB) cores are described. The synthesis strategy involved the preparation of PSt-b-PIB-Clt (i.e., diblocks fitted with a tert-chlorine terminus at the PIB end) by sequential living block polymerization of St and IB, ionizing the -Clt terminus by TiCl4 at room temperature, and linking the PSt-b-PIB prearms by DVB. Molecular characterization was effected mainly by triple detector GPC including refractive index (RI)-, UV-, and laser light scattering (LLS)-GPC traces. Evidence for intra- and intermolecular reactions between individual star–blocks is presented and a comprehensive mechanism to the final product is proposed. The stress–strain behavior of star–blocks has been studied and is compared with those of linear triblocks (i.e., two-arm stars) of similar arm molecular weights and composition in the 25–70°C range. The mechanical properties of star–blocks are invariably superior to those of the triblocks over the entire temperature range. The rheological behavior of star–blocks and linear triblocks has been compared in terms of dynamic viscosity at various frequencies. Star–blocks exhibit significantly lower melt viscosities than their linear counterparts, which signals improved processing behavior. We have also compared select rheological properties of the commercially available PSt-b-(hydrogenated-1,4-polybutadiene)-b-PSt thermoplastic elastomer (Kraton G 1650) with those of PIB-based linear triblocks and multiarm star–blocks of similar glassy/rubbery compositions. The melt viscosities of PIB-based triblocks and star–blocks were significantly lower than that of Kraton G over the entire frequency range investigated. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2235–2243, 1999  相似文献   

14.

The living polymerization of p‐tert‐butoxystyrene (tBuOS) was studied in methylcyclohexane (MeChx)/methylchloride (MeCl) 60/40 v/v solvent mixture at –80°C. The model initiator 1,1,‐ditolylethylene (DTE) capped 2‐chloro‐2,4,4‐trimethylpentane (TMPCl) was formed in situ in conjunction with TiCl4. Lowering the Lewis acidity by the addition of Ti(OIp)4 was necessary to induce a rapid and controlled polymerization of tBuOS. Well‐defined polymers with controlled molecular weights, however, were only obtained at a narrow [Ti(OIp)4]/[TiCl4]=0.83–0.86 ratio. Above this ratio, the polymerization of tBuOS was slow and became absent at [Ti(OIp)4]/[TiCl4]≥1.18. At ratios lower than 0.83, the polymerization was too rapid and the initiator efficiency was lower than 100%. The living polymerization of tBuOS was also studied with SnBr4 as Lewis acid. After capping TMPCl with DTE, Ti(OIp)4 was added to reach [Ti(OIp)4]/[TiCl4]=1.2, followed by the addition of tBuOS and SnBr4. SnBr4 induced a well‐controlled living polymerization approximately first order in [SnBr4], and the polymers exhibited close to theoretical M ns and low polydispersity indices (PDI<1.2). The success of the method was also demonstrated by the clean synthesis of poly(isobutylene‐b‐p‐tert‐butoxystyrene) PIB‐b‐PtBuOS diblock copolymers. PtBuOS‐b‐PIB‐b‐PtBuOS triblock copolymer thermoplastic elastomers were prepared by employing 5‐tert‐butyl‐1,3‐bis(1‐methoxy‐1‐methylethyl)benzene (DCE) as a difunctional initiator for the living polymerization of IB followed by capping with DTE and substitution of TiCl4 with SnBr4 for the polymerization of tBuOS. Deprotection of the triblock copolymer in the presence of catalytic amount of HCl yielded poly(p‐hydroxystyrene‐b‐isobutylene‐b‐p‐hydroxystyrene) (PHOS‐b‐PIB‐b‐PHOS). PHOS‐b‐PIB‐b‐PHOS with 39.3 wt% p‐hydroxystyrene content exhibited typical characteristic of a thermoplastic elastomers (TPEs) with tensile strength of 18 MPa and ultimate elongation of 300%.  相似文献   

15.
This presentation consists of two largely independent parts: The first åfor Profitα part concerns a bird's eye view of recently commercialized carbocationic processes and materials created by these processes in the author's laboratories whose marketing started during the past ∼5 years by various companies. These materials/processes include liquid telechelic polyisobutylene (PIB) for architectural sealants, poly(styrene-b-isobutylene-b-styrene) (PSt-b-PIB-b-PSt) triblocks for thermoplastic elastomers, PIB/PSt-based blocks for coating of medical devices, and PIB-based microemulsions for surface protection of painted metal surfaces. It is concluded that in order to enhance and solidify research in polymer synthesis it would behoove the scientific community to pay increased attention to intellectual property protection. Appropriately managed patenting and publishing activities are self-reinforcing and may be quite profitable. The second “for Fun” part concerns a brief review of the design, synthesis and characterization of two novel fully aliphatic star-block copolymers: ∅︁(PIB-b-PNBD)3 and ∅︁(PNBD-b-PIB)3 (where PNBD = polynorbornadiene). The constituent moieties of these star-blocks are identical except their block sequences are reversed. Motivation for the synthesis of ∅︁(PIB-b-PNBD)3, consisting of a low Tg (∼-73°C) PIB inner-corona attached to a high Tg (∼320°C) PNBD outer corona, was the expectation that this star-block would exhibit thermoplastic elastomer characteristics, and that it could be used in applications where similar polyaromatic-based TPEs cannot be employed (e.g., magnetic signal storage). The other star-block, ∅︁(PNBD-b-PIB)3, comprises the same building blocks with the PIB and PNBD sequences reversed. We found that the secondary chlorine at the PNBD chain end, in conjunction with TiCl4, is able to initiate the polymerization of isobutylene. Details of the carbocationic polymerization of NBD, together with the microstructure of PNBD, will be discussed.  相似文献   

16.
A series of environmentally sensitive amphiphilic networks consisting of 2-sulfoethyl methacrylate (SEMA) chains linked by methacrylate-ditelechelic polyisobutylene (MA–PIB–MA) chains have been prepared and characterized. Network composition was determined after sequential solvent extraction by elemental analysis. These networks are two-phase microheterogeneous systems containing hydrophobic rubbery PIB domains (Tg ~ ?60°C) and hydrophilic poly(2-sulfoethyl methacrylate) domains (Tg ~ ?15°C). They exhibit large contact-angle hysteresis in water which is due to surface segmental mobility and microheterogeneity. By increasing the SEMA content of the networks the contact-angle hysteresis increases. This phenomenon is due to an increase in the advancing contact angle most likely caused by the migration of the nonpolar PIB domains toward the surface and concomitant decrease of the receding contact angle. These amphiphilic networks exhibit non-Fickian swelling in n-heptane, as well as in water, and show pH-sensitive swelling in aqueous media. They rapidly and reversibly swell and deswell in response to increasing or decreasing the pH of the media (cycling between pH = 2 and 12). © 1994 John Wiley & Sons, Inc.  相似文献   

17.
Novel rubbery wound closures containing various proportions and molecular weights of polyisobutylene (PIB) and poly(2‐octyl cyanoacrylate) [P(OctCA)] for potential clinical use were designed, synthesized, characterized, and tested. Homo‐networks were prepared by crosslinking 3‐arm star‐shaped PIBs fitted with terminal cyanoacrylate groups, [Ø(PIB‐CA)3], and co‐networks by copolymerizing Ø(PIB‐CA)3 with OctCA using N‐dimethyl‐p‐toluidine (DMT). Neat Ø(PIB‐CA)3, and Ø(PIB‐CA)3/OctCA blends, upon contact with initiator, polymerize within seconds to optically transparent strong rubbery co‐networks, Ø(PIB‐CA)3co‐P(OctCA). Homo‐ and co‐network formation was demonstrated by sol/gel studies, and structures and properties were characterized by a battery of techniques. The Tg of P(OctCA) is 58 °C by DSC, and 75 °C by DMTA. Co‐networks comprising 25% Ø(PIB‐CA)3 (Mn = 2400 g/mol) and 75% P(OctCA) are stronger and more extensible than skin. Short and long term creep studies show co‐networks exhibit high dimensional stability and <6% creep strain at high loading. When deposited on porcine skin co‐networks yield hermetically‐adhering clear rubbery coatings. Strips of porcine skin coated with co‐networks could be stretched and twisted without compromising membrane integrity. The co‐network is nontoxic to L‐929 mouse fibroblasts. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1640–1651  相似文献   

18.
The syntheses of {‐poly(L ‐lactide) (PLLA)‐b‐polyisobutylene (PIB)‐}n multiblock copolymers were accomplished for the first time by chain extension of PLLA‐b‐PIB‐b‐PLLA triblock copolymers. Well‐defined PLLA‐b‐PIB‐b‐PLLA triblock copolymers with predictable Mns, low PDIs (1.10–1.18) and excellent blocking efficiencies were prepared by anionic ring‐opening polymerizations of L ‐lactide initiated with hydroxyallyl telechelic PIB (HO‐Allyl‐PIB‐Allyl‐OH) in toluene at 110 °C. The triblock copolymers were successfully chain extended with 4,4′‐methylenebis(phenylisocyanate) (MDI) to obtain the multiblock copolymers with good gravimetric yields of ~86 to 96%. The chain‐extended polymers were soluble in a range of common organic solvents. The block copolymers showed two glass transition temperatures in differential scanning calorimetric analysis for the PIB and PLLA blocks indicating microphase separation, which was supported by atomic force microscopy images. The as‐synthesized compression molded multiblock copolymers exhibited tensile strengths in the range of 8–24 MPa with elongations at break in the range of 2.5–400%. The static and dynamic mechanical properties showed a strong dependence on the relative PLLA content in the copolymer. The dynamic mechanical analysis also indicated microphase separation at higher PLLA compositions. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3490–3505, 2009  相似文献   

19.
Amphiphilic polymer networks consisting of hydrophilic poly(2‐hydroxyethyl methacrylate) (PHEMA) and hydrophobic polyisobutylene (PIB) chains were synthesized from a cationic copolymer of isobutylene (IB) and 3‐isopropenyl‐α,α‐dimethylbenzyl isocyanate (IDI) prepared at ?50 °C in dichloromethane in conjunction with SnCl4. The isocyanate groups of this random copolymer, PIB(NCO)n, were subsequently transformed in situ to methacrylate (MA) groups in the dibutyltin dilaurate‐catalyzed reaction with 2‐hydroxyethyl methacrylate (HEMA) at 30 °C. The resulting PIB(MA)n with number–average molecular weight 8200 and average functionality Fn ~ 4 per chain was in situ copolymerized radically with HEMA at 70 °C, giving rise to the amphiphilic networks containing 41 and 67 mol % HEMA. PHEMA–PIB network containing 43 mol % HEMA was also prepared by radical copolymerization of PIB(MA)n precursor with HEMA using sequential synthesis. An amphiphilic nature of the resulting networks was proved by swelling in both water and n‐heptane. PIB(NCO)n and PIB(MA)n were characterized by FTIR spectroscopy, SEC and the latter also by 1H NMR spectroscopy. Solid state 13C NMR spectroscopy was used for characterization of the resulting PHEMA–PIB networks. Whereas single glass‐transition temperature, Tg = ?67.4 °C, was observed for the rubbery crosslinked PIB prepared by reaction of PIB(NCO)n with water, the PHEMA–PIB networks containing 67 and 41 mol % HEMA showed two Tg's: ?70.4 and 102.7 °C, and ?63 and 107.2 °C, respectively. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2891–2900, 2006  相似文献   

20.
This research concerned the synthesis and characterization of novel conetworks containing polyisobutylene (PIB) and polyethyl‐2‐cyanoacrylate [poly(Et‐CA)] sequences. The syntheses involved the copolymerization of CA‐telechelic three‐arm star PIB [Ø(PIB‐CA)3] with ethyl‐2‐cyanoacrylate (Et‐CA) mediated by nucleophiles or by living tissue (fresh eggs). The conetworks were characterized by swelling in hexanes, tetrahydrofuran (THF), and acetone, and the results indicate co‐continuous PIB and poly(Et‐CA) domains. The conetworks exhibit two Tgs indicating phase‐separation between PIB and poly(Et‐CA). The outstanding oxidative resistance of the conetworks was demonstrated by exposure to concentrated nitric acid. The tensile strengths, moduli, and elongations of a series of conetworks with different overall compositions were investigated and the findings interpreted in terms of covalently linked rubbery and glassy domains. AFM also suggests the presence of phase‐separated rubbery and glassy domains. DMTA spectra of a Ø(PIB‐CA)3 homonetwork, and Ø(PIB‐CA)3/Et‐CA conetworks were analyzed and interpreted in terms of coexisting rubbery and glassy domains. Observations made during the exposure of Ø(PIB‐CA)3/Et‐CA mixtures to proteinaceous tissue, in combination with characterization data, were used to propose a structural model for the conetworks. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号