首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We study the long-time behaviour of solutions of the Vlasov–Poisson–Fokker–Planck equation for initial data small enough and satisfying some suitable integrability conditions. Our analysis relies on the study of the linearized problems with bounded potentials decaying fast enough for large times. We obtain global bounds in time for the fundamental solutions of such problems and their derivatives. This allows to get sharp bounds for the decay of the difference between the solutions of the Vlasov–Poisson–Fokker–Planck equation and the solution of the free equation with the same initial data. Thanks to these bounds, we get an explicit form for the second term in the asymptotic expansion of the solutions for large times. © 1998 B. G. Teubner Stuttgart—John Wiley & Sons, Ltd.  相似文献   

2.
Time‐discrete variational schemes are introduced for both the Vlasov–Poisson–Fokker–Planck (VPFP) system and a natural regularization of the VPFP system. The time step in these variational schemes is governed by a certain Kantorovich functional (or scaled Wasserstein metric). The discrete variational schemes may be regarded as discretized versions of a gradient flow, or steepest descent, of the underlying free energy functionals for these systems. For the regularized VPFP system, convergence of the variational scheme is rigorously established. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

3.
We consider the Vlasov–Poisson–Fokker–Planck equation in three dimensions as the backward Kolmogorov equation associated to a non‐linear diffusion process. In this way we derive new L‐estimates on the spatial density which are uniform in the diffusion parameters. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

4.
We consider the Cauchy problem for the Vlasov–Maxwell–Fokker–Planck system in the plane. It is shown that for smooth initial data, as long as the electromagnetic fields remain bounded, then their derivatives do also. Glassey and Strauss have shown this to hold for the relativistic Vlasov–Maxwell system in three dimensions, but the method here is totally different. In the work of Glassey and Strauss, the relativistic nature of the particle transport played an essential role. In this work, the transport is nonrelativistic, and smoothing from the Fokker–Planck operator is exploited. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
This work is devoted to prove the existence of weak solutions of the kinetic Vlasov–Poisson–Fokker–Planck system in bounded domains for attractive or repulsive forces. Absorbing and reflection-type boundary conditions are considered for the kinetic equation and zero values for the potential on the boundary. The existence of weak solutions is proved for bounded and integrable initial and boundary data with finite energy. The main difficulty of this problem is to obtain an existence theory for the linear equation. This fact is analysed using a variational technique and the theory of elliptic–parabolic equations of second order. The proof of existence for the initial–boundary value problems is carried out following a procedure of regularization and linearization of the problem. © 1998 B. G. Teubner Stuttgart—John Wiley & Sons, Ltd.  相似文献   

6.
Let us consider a solution f(x,v,t)?L1(?2N × [0,T]) of the kinetic equation where |v|α+1 fo,|v|α ?L1 (?2N × [0, T]) for some α< 0. We prove that f has a higher moment than what is expected. Namely, for any bounded set Kx, we have We use this result to improve the regularity of the local density ρ(x,t) = ∫?dν for the Vlasov–Poisson equation, which corresponds to g = E?, where E is the force field created by the repartition ? itself. We also apply this to the Bhatnagar-Gross-;Krook model with an external force, and we prove that the solution of the Fokker-Pianck equation with a source term in L2 belongs to L2([0, T]; H1/2(?)).  相似文献   

7.
The relativistic Vlasov–Maxwell–Fokker–Planck system is used in modelling distribution of charged particles in plasma. It consists of a transport equation coupled with the Maxwell system. The diffusion term in the equation models the collisions among particles, whereas the viscosity term signifies the dynamical frictional forces between the particles and the background reservoir. In the case of one space variable and two momentum variables, we prove the existence of a classical solution when the initial density decays fast enough with respect to the momentum variables. The solution which shares this same decay condition along with its first derivatives in the momentum variables is unique. © 1998 B. G. Teubner Stuttgart—John Wiley & Sons, Ltd.  相似文献   

8.
A fluid–particles system of the compressible Navier‐Stokes equations and Vlasov‐Fokker‐Planck equation (including the case of Vlasov equation) in three‐dimensional space is considered in this paper. The coupling arises from a drag force exerted by the fluid onto the particles. We study a Cauchy problem with large data, and establish the existence of global weak solutions through an approximation scheme, energy estimates, and weak convergence. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, we propose a composite generalized Laguerre–Legendre pseudospectral method for the Fokker–Planck equation in an infinite channel, which behaves like a parabolic equation in one direction, and behaves like a hyperbolic equation in other direction. We establish some approximation results on the composite generalized Laguerre–Legendre–Gauss–Radau interpolation, with which the convergence of proposed composite scheme follows. An efficient implementation is provided. Numerical results show the spectral accuracy in space of this approach and coincide well with theoretical analysis. The approximation results and techniques developed in this paper are also very appropriate for many other problems on multiple-dimensional unbounded domains, which are not of standard types.  相似文献   

10.
We formulate and analyze a novel numerical method for solving a time‐fractional Fokker–Planck equation which models an anomalous subdiffusion process. In this method, orthogonal spline collocation is used for the spatial discretization and the time‐stepping is done using a backward Euler method based on the L1 approximation to the Caputo derivative. The stability and convergence of the method are considered, and the theoretical results are supported by numerical examples, which also exhibit superconvergence. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 1534–1550, 2015  相似文献   

11.
We prove stability estimates and derive optimal convergence rates for the streamline diffusion and discontinuous Galerkin finite element methods for discretization of the multi‐dimensional Vlasov‐Fokker‐Planck system. The focus is on the theoretical aspects, where we deal with construction and convergence analysis of the discretization schemes. Some related special cases are implemented in M. Asadzadeh [Appl Comput Meth 1(2) (2002), 158–175] and M. Asadzadeh and A. Sopasakis [Comput Meth Appl Mech Eng 191(41–42) (2002), 4641–4661]. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005  相似文献   

12.
A collisionless plasma is modelled by the Vlasov–Poisson system in three space dimensions. A fixed background of positive charge, which is independent of time and space, is assumed. The situation in which mobile negative ions balance the positive charge as ∣x∣ tends to infinity is considered. Hence, the total positive charge and the total negative charge are infinite. Smooth solutions with appropriate asymptotic behaviour were shown to exist locally in time in a previous work. This paper studies the time behaviour of the net charge and a natural quantity related to energy, and shows that neither is constant in time in general. Also, neither quantity is positive definite. When the background density is a decreasing function of ∣v∣, a positive definite quantity is constructed which remains bounded. A priori bounds are obtained from this. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
In this article a numerical technique is presented for the solution of Fokker‐Planck equation. This method uses the cubic B‐spline scaling functions. The method consists of expanding the required approximate solution as the elements of cubic B‐spline scaling function. Using the operational matrix of derivative, the problem will be reduced to a set of algebraic equations. Some numerical examples are included to demonstrate the validity and applicability of the technique. The method is easy to implement and produces very accurate results. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

14.
The time fractional Fokker‐Planck equation has been used in many physical transport problems which take place under the influence of an external force field. In this paper we examine pseudospectral method based on Gegenbauer polynomials and Chebyshev spectral differentiation matrix to solve numerically a class of initial‐boundary value problems of the time fractional Fokker‐Planck equation on a finite domain. The presented method reduces the main problem to a generalized Sylvester matrix equation, which can be solved by the global generalized minimal residual method. Some numerical experiments are considered to demonstrate the accuracy and the efficiency of the proposed computational procedure.  相似文献   

15.
This paper deals with the mathematical analysis of the linear stationary Fokker–Planck equation in a half‐space (also called ‘Milne’ problem), in presence of an external electrostatic force field. We prove existence, uniqueness and asymptotic properties of the solution. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, we propose a composite Laguerre spectral method for the nonlinear Fokker–Planck equations modelling the relaxation of fermion and boson gases. A composite Laguerre spectral scheme is constructed. Its convergence is proved. Numerical results show the efficiency of this approach and coincide well with theoretical analysis. Some results on the Laguerre approximation and techniques used in this paper are also applicable to other nonlinear problems on the whole line. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
The problem of stability of stationary solutions of the Vlasov–Poisson system has received a lot of attention in the physics literature, both in the stellar dynamics and the plasma physics cases. The energy-Casimir method has been used to prove non-linear stability for various conservative systems, but no rigorous application to the Vlasov–Poisson system has been given yet. We employ this method to prove non-linear stability of stationary solutions for the plasma physics case in three geometrically different settings.  相似文献   

18.
We study the long‐time behavior of kinetic equations in which transport and spatial confinement (in an exterior potential or in a box) are associated with a (degenerate) collision operator acting only in the velocity variable. We expose a general method, based on logarithmic Sobolev inequalities and the entropy, to overcome the well‐known problem, due to the degeneracy in the position variable, of the existence of infinitely many local equilibria. This method requires that the solution be somewhat smooth. In this paper, we apply it to the linear Fokker‐Planck equation and prove decay to equilibrium faster than O(t−1/ϵ) for all ϵ > 0. © 2001 John Wiley & Sons, Inc.  相似文献   

19.
It is considered the Vlasov–Poisson equation for a plasma confined in an unbounded cylinder and it is proven an existence and uniqueness result for non‐L1 (but almost L1) initial charge distribution. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
A collisionless plasma is modelled by the Vlasov–Maxwell system. In the presence of very large velocities, relativistic corrections are meaningful. When magnetic effects are ignored this formally becomes the relativistic Vlasov–Poisson equation. The initial datum for the phase space density ƒ0(x, v) is assumed to be sufficiently smooth, non‐negative and cylindrically symmetric. If the (two‐dimensional) angular momentum is bounded away from zero on the support of ƒ0(x, v), it is shown that a smooth solution to the Cauchy problem exists for all times. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号