首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 46 毫秒
1.
An integrated 3mm-wave Schottky diode mixer and pseudomorphic high-electron-mobility transistor (PHEMT) IF amplifier with record noise performance at room temperature is described. The design has shown the room-temperature double-sideband (DSB) receiver noise temperature TRDSB of 190 K at 100 GHz due to a very low conversion loss in the full-height waveguide mixer and an ultra-low noise of the PHEMT IF amplifier. The receiver noise temperature has been reduced by a factor of 1.5 in comparison with the best previously reported 3mm-wave Schottky diode mixer receiver.  相似文献   

2.
In single crystals of orthorhombic YAlO3, widely known as a host‐matrix for Ln3+‐lasant ions, many‐phonon stimulated Raman scattering interactions as well as different manifestations of cascaded and cross‐cascaded nonlinear χ(3)↔χ(3) processes are initiated by picosecond laser pulses. The scientific and applicative potential of YAlO3 crystals is considerably expanded by the demonstration of its SRS properties. In particular, the studies revealed the manifestation of eight χ(3)‐active vibrational modes. The corresponding Stokes and anti‐Stokes lines have been assigned and the steady‐state Raman gain coefficients related to the strongest phonon mode have been estimated. In addition, a short review presents the stimulated emission channels of its Ln3+‐ions together with some χ(3)‐nonlinear laser properties of crystals belonging to the binary Y2O3‐Al2O3 system.  相似文献   

3.
The “far‐field” surface plasmon resonance (FSPR) of metal nanoparticles, which have built a facile way to emission enhancement of red, green, blue, and white with nice reproducibility, has big potential application in solution‐processed organic light‐emitting diodes (OLEDs). According to the theory of the “far‐field” effect, the reflectivity of the metal surface and the phase shift at the reflection play an important role in enhancing ratio, which strongly relate to the size and shape of nanoparticles. In this work, gold nanospheres with different sizes and nanorods are synthesized in order to determine the size and shape effect of FSPR. The results demonstrate that the one with higher reflectivity in a certain range induces a better emission enhancement in the luminous efficiency and the maximum brightness. The nanoparticles with bigger sizes and shape of rods have higher reflectivity, which is consistent with the simulation based on FSPR effect. The phase shifts of different nanoparticles are optimized by the distance between gold nanoparticles and emitters. The metal NPs with a high reflectivity and the applicable phase shift will have big potential for the emission enhancement in OLEDs.  相似文献   

4.
From postrecording interviews of professional singers, it was hypothesized that recording environments, i.e., sound-treated environment versus an auditorium, may induce different vocal behaviors. To test this hypothesis, three groups consisting of nonsingers, singers, and actors were recorded in two different recording environments: a sound-treated booth (IAC) and an auditorium (AUD). Three recordings were obtained from each participant: recording one (IAC) and two (AUD1) required the participants to read in a normal voice; recording three (AUD2) required participants to pretend that they were "performing" before a full house. Results indicated that only the singers and the actors exhibited significant spectral and/or frequency/duration differences from one recording environment to another, with the most dramatic differences exhibited by the singers. It was concluded that the environment in which we record experimental samples from professional voice users, especially singers, should be considered as a variable that can affect results.  相似文献   

5.
We investigate modification of Kolmogorov wave turbulence in QCD calculating gluon spectra as functions of time in the presence of a low energy source which feeds in energy density in the infrared region at a time-dependent rate. Then considering the picture of saturation constraints as has been constructed in the “bottom-up” thermalization approach we revisit that picture for RHIC center-mass energy, W=130 GeV, and also extend it to LHC center-mass energy, W=5500 GeV, thus for two cases having an opportunity to calculate the equilibration time, τeq|therm, of the gluon system produced in a central heavy ion collision at mid-rapidity region. Thereby, at RHIC and LHC energies we can match the equilibration time, obtained from the late stage gluon spectrum of the modified Kolmogorov wave turbulence, onto that of the “bottom-up” thermalization and other evolutional approaches as well. In addition, from the revised “bottom-up” approach we find the gluon liberation coefficient to be on the average, ε0.81–1.06 at RHIC and ε0.50–0.56 at LHC. We also present other phenomenological estimates of τtherm which, at QCD realistic couplings, yield 0.45–0.65 fmτtherm0.97–2.72 fm at RHIC and 0.31–0.40 fmτtherm0.86–2.04 fm at LHC. We show that the second upper-bounds of τtherm in both cases are due to the late stage gluon spectrum of the original Kolmogorov wave turbulence in QCD, previously deduced with a low energy source which feeds in energy density at a constant rate. On the other hand, the lower-bounds and first upper-bounds of τtherm are due to the late stage gluon spectrum of the modified QCD wave turbulence, deduced here at the specific time-dependent rate. In the latter case, at certain conditions, taking also into account both very small and realistic couplings we give estimates: 0.65 fmτtherm1.29 fm at RHIC and 0.52 fmτtherm1.16 fm at LHC, as well as at realistic couplings we find 0.53<τtherm<0.7 fm at RHIC and 0.41<τtherm<0.65 fm at LHC.  相似文献   

6.
Identification of specific packing interactions within in the hydrophobic core of proteins is important for understanding the integrity of protein structure. Finding such interactions is challenging because few tools allow monitoring of a specific interaction in the presence of several non‐specific forces that hold proteins together. It is important to understand how and when such interactions develop during protein folding. In this study, we have used the intrinsic tryptophan residue, Trp53, as an ultraviolet resonance Raman probe to elucidate the packing interactions in the hydrophobic core of the protein barstar. Barstar is extensively studied for its folding, unfolding and aggregation properties. The Trp53 residue is known to be completely buried in the hydrophobic core of the protein and is used extensively as an intrinsic probe to monitor the folding and unfolding reactions of barstar. A comparison of the resonance Raman cross sections of some bands of Trp53 with those observed for N‐acetyl‐tryptophanoamide in water suggests that Trp53 in barstar is indeed isolated from water. Intensity ratio of the Fermi doublet suggests that Trp53 is surrounded by several aliphatic amino acid residues in corroboration with the crystal structure of barstar. Importantly, we show that the side chain of Trp53 is involved in a unique CH–π interaction with CH groups of Phe56 as well as a steric interaction with the methyl group of Ile5. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
This review paper deals with an overview of molecule-based magnetism as a rapidly developing interdisciplinary field, topological symmetry rule as the first principle of spin alignment in organic open-shell systems in the ground state, the proposal of organic through-bond 1D and 2D ferro- and superparamagnets and the detection of the first organic high-spin molecule, m-phenylenebis(phenylmethylene) in the quintet ground state (S = 2), followed by extended organic high-spin systems with π-conjugation such as aromatic hydrocarbons having S = 3, 4, 5. The paper also describes a theoretical approach to the understanding of electronic spin structures of organic high-spin molecules by invoking both Heisenberg and Hubbard model Hamiltonians, weakly interacting intramolecular high-spin systems from both experimental and theoretical sides, the spin density distribution of the first organic high-spin molecule in terms of electron- nuclear multiple resonance spectroscopy and the detection and characterization of ionic high-spin hydrocarbons, emphasizing the establishment of high spin chemistry underlying organic molecular magnetism.  相似文献   

8.
In this paper, the spin-dependent electron transport is studied in detail in a magnetic nanostructure with a δ-function potential. It is shown that the large spin-polarization can be achieved in such a device, and the degree of the spin-polarization strongly depends on the height of the δ-function potential. It is also shown that the conductance-polarization apparently has the bigger oscillatory magnitudes with the height of δ-function potential increasing. These interesting features will be more helpful for developing new types of devices.  相似文献   

9.
An enhanced nonlinear current-voltage behavior has been observed in Au nanoparticle dispersed CaCu3Ti4O12 composite films. The double Schottky barrier model is used to explain the enhanced nonlinearity in I-V curves. According to the energy-band model and fitting result, the nonlinearity in Au: CCTO film is mainly governed by thermionic emission in the reverse-biased Schottky barrier. This result not only supports the mechanism of double Schottky barrier in CCTO, but also indicates that the nonlinearity of current-voltage behavior could be improved in nanometal composite films, which has great significance for the resistance switching devices.  相似文献   

10.
11.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号