首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present investigation we show that the cyanobacterium Anabaena variabilis PCC 7937 produces a single mycosporine-like amino acid (MAA), shinorine (retention time = 2.3 min and absorption maximum at 334 nm) when isolated and purified by HPLC. Although there was significant induction of MAA synthesis from its initial value under 395 or 320 nm cutoff filters, MAA induction was significantly more pronounced in samples covered with 295 nm cutoff filters after 72 h of exposure. Heat as a stress factor had no effect on MAA induction with or without UV radiation. In contrast, salt and ammonium treatment had synergistic effects with UV stress. MAA synthesis was also induced by salt and ammonium in a concentration-dependent manner without UV stress in samples covered with 395 nm cutoff filters. The results indicate that MAAs may have other functions in addition to photoprotection in this organism.  相似文献   

2.
Three filamentous and heterocystous N2-fixing cyanobacteria, Anabaena sp., Nostoc commune and Scytonema sp. were tested for the presence of ultraviolet-absorbing mycosporine-like amino acids (MAAs) and their induction by solar ultraviolet-B (UV-B) radiation. High performance liquid chromatographic (HPLC) studies revealed the presence of only one type of MAAs in all three cyanobacteria, that was identified as shinorine, a bisubstituted MAA containing both glycine and serine groups having an absorption maximum at 334 nm and a retention time of around 2.8 min. There was a circadian induction in the synthesis of MAAs when the cultures were exposed to mid-latitude solar radiation (Playa Unión, Rawson, Chubut, Patagonia, Argentina) for 3 days, 4–6th February, 2000. Solar radiation was measured by an ELDONET (European Light Dosimeter Network) filter radiometer permanently installed on the roof of the Estación de Fotobiología Playa Unión (43°18′ S; 65°03′ W). The maximum irradiances were around 450–500, 45–50 and 1.0–1.2 W m−2 for PAR (photosynthetic active radiation), UV-A (ultraviolet-A) and UV-B (ultraviolet-B), respectively. PAR and UV-A had no significant impact on MAA induction while UV-B induced the synthesis of shinorine in all three cyanobacteria. Shinorine was found to be induced mostly during the light period. During the dark period the concentration stayed almost constant. In addition to shinorine, another unidentified, water-soluble, brownish compound with an absorption maximum at 315 nm was found to be induced by UV-B only in Scytonema sp. and released into the medium. This substance was neither found in Anabaena sp. nor in Nostoc commune. Judging from the results, the studied cyanobacteria may protect themselves from deleterious short wavelength radiation by their ability to synthesize photoprotective compounds in response to UV-B radiation.  相似文献   

3.
Three filamentous and heterocystous cyanobacterial strains of Nodularia, Nodularia baltica, Nodularia harveyana and Nodularia spumigena, have been tested for the presence and induction of ultraviolet-absorbing/screening mycosporine-like amino acids (MAAs) by simulated solar radiation in combination with 395 (receiving photosynthetically active radiation (PAR) only), 320 (receiving PAR + UV-A) and 295 (receiving PAR + UV-A + UV-B) nm cut-off filters. Absorption spectroscopic analyses of the methanolic extracts of samples revealed a typical MAA peak at 334 nm in all three cyanobacteria. Specific contents of MAAs had a pronounced induction in the samples covered with 295 nm cut-off filters after 72 h of irradiation. In comparison, there was little induction of MAAs in the samples covered by 395 and 320 nm cut-off filters. High performance liquid chromatographic (HPLC) studies revealed the presence of two types of MAAs in all three cyanobacteria, which were identified as shinorine and porphyra-334, both absorbing maximally at 334 nm. The occurrence of porphyra-334 is rare in cyanobacteria. Specific content of both shinorine and porphyra-334 were induced remarkably only in the samples covered with 295 nm cut-off filters. The results indicate that in comparison to UV-A and PAR, UV-B is more effective in eliciting MAAs induction in the studied cyanobacteria.  相似文献   

4.
In the present investigation we show for the first time that bioconversion of a primary mycosporine-like amino acid (MAA) into a secondary MAA is regulated by sulfur deficiency in the cyanobacterium Anabaena variabilis PCC 7937. This cyanobacterium synthesizes the primary MAA shinorine (RT = 2.2 min, λmax = 334 nm) under normal conditions (PAR + UV-A + UV-B); however, under sulfur deficiency, a secondary MAA palythine-serine (RT = 3.9 min, λmax = 320 nm) appears. Addition of methionine to sulfur-deficient cultures resulted in the disappearance of palythine-serine, suggesting the role of primary MAAs under sulfur deficiency in recycling of methionine by donating the methyl group from the glycine subunit of shinorine to tetrahydrofolate to regenerate the methionine from homocysteine. This is also the first report for the synthesis of palythine-serine by cyanobacteria which has so far been reported only from corals. Addition of methionine also affected the conversion of mycosporine-glycine into shinorine, consequently, resulted in the appearance of mycosporine-glycine (RT = 3.6 min, λmax = 310 nm). Our results also suggest that palythine-serine is synthesized from shinorine. Based on these results we propose that glycine decarboxylase is the potential enzyme that catalyzes the bioconversion of shinorine to palythine-serine by decarboxylation and demethylation of the glycine unit of shinorine.  相似文献   

5.
We present evidence for the presence and nature of a UVB-specific photoreceptor in the cyanobacterium Chlorogloeopsis PCC 6912. The photoreceptor mediates at least the photosensory induction of mycosporine-like amino acid (MAA) synthesis. Because MAA synthesis in this organism can also be induced under salt stress, we could distinguish between the photosensory and the purely biochemical requirements of MAA synthesis. Neither visible light nor UV radiation was necessary for the biosynthetic process, thus indicating that the UVB (280-320 nm) dependence of biosynthesis is based on a UV photosensory capacity of the organism. An action spectrum of the MAA synthesis showed a distinct peak at 310 nm tailing down into the UVA (320-400 nm) region with no detected activity above 340 nm. We found that radiation below 300 nm caused significant inhibition of synthesis of MAAs indicating that the action spectrum at these wavelengths may not have been satisfactorily resolved. We propose that a pterin is a good candidate for a photoreceptor chromophore as (1) reduced pterins present absorption spectra congruent with the action spectrum obtained; and (2) an inhibitor of the biosynthetic pathway of pterins and an antagonist of excited states of pterins, both depressed the photosensory efficiency of induction but not its chemosensory efficiency.  相似文献   

6.
Cultures of the marine dinoflagellate Gyrodinium dorsum have been exposed to polychromatic radiation (photosynthetically active radiation and UV) from a solar simulator for up to 72 h. Different irradiance spectra in the ultraviolet are produced by inserting cut-off filters between lamp and samples. The mycosporine-like amino acid (MAA) content and composition are investigated by spectroscopic and chromatographic analysis. The study reveals that G. dorsum contains a complex mixture of several aminocyclohexenimine-MAAs and one aminocyclohexenone-MAA. UV irradiation around 320 nm induces an increase in the concentration of all MAAs in the samples. In contrast, exposure to short-wavelength UV-B radiation results in decreased overall MAA production. Furthermore, there is a spectral shift in the absorption of the MAA mixture towards shorter wavelengths, indicating that short-wavelength UV-B induces an altered MAA composition. The amount of MAAs is normalized to the chlorophyll a concentration.  相似文献   

7.
The synthesis or accumulation of mycosporine-like amino acids (MAAs) is an important UV tolerance mechanism in aquatic organisms. To investigate the wavelength dependence of MAA synthesis in the marine dinoflagellate Gyrodinium dorsum, the organism was exposed to polychromatic radiation (PAR and UV) from a solar simulator for up to 72 h. Different irradiance spectra were produced by inserting various cut-off filters between lamp and samples. A polychromatic action spectrum for the synthesis of MAA synthesis was constructed. PAR and long wavelength UV-A radiation showed almost no effect while the most effective wavelength range was around 310 nm. Shorter wavelengths where less effective in the induction of MAA synthesis. Wavelengths below 300 nm damaged the organisms severely as indicated by a decrease in chlorophyll a absorption.  相似文献   

8.
To determine the action spectrum for photoinduction of the ultraviolet (UV)-absorbing mycosporine-like amino acid shinorine, specimens of the marine red alga Chondrus crispus were irradiated with monochromatic light of various wavelengths using the Okazaki large spectrograph at the National Institute for Basic Biology, Okazaki, Japan. Fluence response curves were determined for the wavelengths between 280 and 750 nm, by irradiating the algae with monochromatic light for 10 h, followed by 4 h of 25 micromol m(-2) s(-1) photosynthetically active radiation and 10 h darkness. Samples were taken after the second exposure interval. A linear correlation between fluence rate and accumulated shinorine concentration was detected for wavelengths between 350 and 490 nm in the fluence rate range of 20-30 micromol m(-2) s(-1), whereas there was no induction above 490 nm. Below 350 nm a decline in shinorine concentration could be observed at fluence rates above 30 micromol m(-2) s(-1), probably due to an inhibition of photosynthetic activity and a subsequent impairment of shinorine biosynthesis. The constructed action spectrum indicated that the photoreceptors mediating shinorine photoinduction might be an unidentified UV-A-type photoreceptor with absorption peaks at 320, 340 and 400 nm.  相似文献   

9.
Increased awareness regarding the harmful effects of ultraviolet (UV)-B radiation has led to the search for new sources of natural UV-B protecting compounds. Mycosporine-like amino acids are one of such promising compounds found in several organisms. Cyanobacteria are ideal organisms for isolation of these compounds due to their compatibility and adaptability to thrive under harsh environmental conditions. In the following investigation, we report the production of shinorine in Leptolyngbya sp. isolated from the intertidal region. Based on the spectral characteristics and liquid chromatography-mass spectrometry analysis, the UV-absorbing compound was identified as shinorine. To the best of our knowledge, this is the first report on the occurrence of shinorine in Leptolyngbya sp. We also investigated the effect of artificial UV-B radiation and periodic desiccation on chlorophyll-a, total carotenoids, and mycosporine-like amino acids (MAAs) production. The UV-B radiation had a negative effect on growth and chlorophyll concentration, whereas it showed an inductive effect on the production of total carotenoids and MAAs. Desiccation along with UV-B radiation led to an increase in the concentration of photoprotective compounds. These results indicate that carotenoids and MAAs thus facilitate cyanobacteria to avoid and protect themselves from the deleterious effects of UV-B and desiccation.  相似文献   

10.
Cyanobacteria must cope with the negative effects of ultraviolet B (280-315 nm) (UV-B) stress caused by their obligatory light requirement for photosynthesis. The adaptation of the cyanobacterium Anabaena sp. to moderate UV-B radiation has been observed after 2 weeks of irradiation, as indicated by decreased oxidative stress, decreased damage, recovered photosynthetic efficiency and increased survival. Oxidative stress in the form of UV-B-induced production of reactive oxygen species was measured in vivo with the oxidative stress-sensitive probe 2',7'-dichlorodihydrofluorescein diacetate. Photooxidative damage by UV-B radiation, including lipid peroxidation and DNA strand breakage, was determined by a modified method using thiobarbituric acid reactive substances and fluorometric analysis of DNA unwinding. Photosynthetic quantum yield was determined by pulse amplitude-modulated fluorometry. The results suggest that moderate UV-B radiation results in an evident oxidative stress, enhanced lipid peroxidation, increased DNA strand breaks, elevated chlorophyll bleaching as well as decreased photosynthetic efficiency and survival during the initial exposure. However, DNA strand breaks, photosynthetic parameters and chlorophyll bleaching returned to their unirradiated levels after 4-7 days of irradiation. Oxidative stress and lipid peroxidation appeared to respond later because decreases were observed after 7 days of radiation. The survival curve against irradiation time exhibited a close relationship with the changes in photosynthetic quantum yield and DNA damage, with little mortality after 4 days. Growth inhibition by UV-B radiation was observed during the first 7 days of radiation, whereas normal growth resumed even under UV-B stress thereafter. An efficient defense system was assumed to come into play to repair photosynthetic and DNA damage and induce the de novo synthesis of UV-sensitive proteins and lipids, allowing the organisms to adapt to UV-B stress successfully and survive as well as grow. No induction of mycosporine-like amino acids (MAA) was observed during the adaptation of Anabaena sp. to UV-B stress in our work. The adaptation of the cyanobacterium correlated with and could be caused by the oxidative stress and oxidative damage.  相似文献   

11.
Mycosporine-like amino acids (MAAs) are UV absorbing pigments, and structurally distinct MAAs have been identified in taxonomically diverse organisms. Two novel MAAs were purified from the cyanobacterium Nostoc commune, and their chemical structures were characterized. An MAA with an absorption maximum at 335 nm was identified as a pentose-bound porphyra-334 derivative with a molecular mass of 478 Da. Another identified MAA had double absorption maxima at 312 and 340 nm and a molecular mass of 1,050 Da. Its unique structure consisted of two distinct chromophores of 3-aminocyclohexen-1-one and 1,3-diaminocyclohexen and two pentose and hexose sugars. These MAAs had radical scavenging activity in vitro; the 1050-Da MAA contributed approximately 27% of the total radical scavenging activities in a water extract of N. commune. These results suggest that these glycosylated MAAs have multiple roles as a UV protectant and an antioxidant relevant to anhydrobiosis in N. commune.  相似文献   

12.
The photostability and photophysical parameters of an aqueous solution of the mycosporine-like amino acid (MAA) porphyra-334 have been determined. The excited-singlet state lifetime, measured by time-correlated single photon counting, was 0.4 ns. Laser flash photolysis experiments at 355 nm did not show any transient species. The triplet state of porphyra-334 was sensitized by triplet-triplet energy transfer. The T-T absorption spectrum was determined and the maximal absorption coefficient at 440 nm was estimated to be 1 x 10(4) M(-1) cm(-1). In this way an upper limit for the intersystem crossing quantum yield was determined. The very low quantum yield of fluorescence (phiF = 0.0016) and triplet formation (phiT < 0.05) together with a photodecomposition quantum yield of 2-4 x 10(-4), in the absence and the presence of oxygen respectively, can be explained by a very fast internal conversion process. These results support the photoprotective role assigned to this MAA in living systems.  相似文献   

13.
The filamentous rhodophytes Callithamnion gaudichaudi Agardh and Ceramium sp. were utilized to study the effects of solar radiation (PAR, 400-700 nm, UV-B, 280-315 nm and UV-A, 315-400 nm) on the photosynthetic performance in situ in Patagonia waters (Argentina). A pulse amplitude modulated (PAM) fluorometer was used to determine the fluorescence parameters. The two species grew in different habitats in the eulittoral: Ceramium sp. was found only in rock pools while C. gaudichaudii grew on exposed rocks and fell dry during low tide. Both species differed in their fluorescence parameters and their sensitivity to solar radiation exposure. The photosynthetic quantum yield had its lowest values at noon, but it recovered in the afternoon/evening hours, when irradiances were lower. PAR (irradiance of about 400 W m(-2) at noon) was responsible for most of the decrease in the yield on clear days, especially in Ceramium sp., but UVR (280-400 nm) also accounted for a significant decrease. Fluence rate response curves indicated that both species were adapted to low fluence rates and showed a pronounced non-photochemical quenching at intermediate and higher irradiances. Both species showed a rapid adaptation during measurement of fast induction kinetics but differed significantly in their fluorescence components. All photosynthetic pigments were bleached after 8 h exposure to solar radiation over a full day. Strong absorption in the UV-A range, most likely due to mycosporine-like amino acids, was detected in both strains. The pronounced sensitivity to solar radiation in situ and the recovery capacity of these two filamentous Rhodophyte species, as well as the presence of protective compounds, suggests that these algae have the ability to adapt to the relatively high radiation levels and changes in irradiance found in the Patagonia waters.  相似文献   

14.
We analysed and compared the functioning of UV-B screening pigments in plants from marine, fresh water and terrestrial ecosystems, along the evolutionary line of cyanobacteria, unicellular algae, primitive multicellular algae, charophycean algae, lichens, mosses and higher plants, including amphibious macrophytes. Lichens were also included in the study. We were interested in the following key aspects: (a) does the water column function effectively as an 'external UV-B filter'?; (b) do aquatic plants need less 'internal UV-B screening' than terrestrial plants?; (c) what role does UV screening play in protecting the various plant groups from UV-B damage, such as the formation of thymine dimers?; and (d) since early land 'plants' (such as the predecessors of present-day cyanobacteria, lichens and mosses) experienced higher UV-B fluxes than higher plants, which evolved later, are primitive aquatic and land organisms (cyanobacteria, algae, lichens, mosses) better adapted to present-day levels of UV-B than higher plants? Furthermore, polychromatic action spectra for the induction of UV screening pigments of aquatic organisms have been determined. This is relevant for translating 'physical' radiation measurements of solar UV-B into 'biological' and 'ecological' effects. From the action spectra, radiation amplification factors (RAFs) have been calculated. These action spectra allow us to determine any mitigating or antagonistic effects in the ecosystems and therefore qualify the damage prediction for the ecosystems under study. We summarize and discuss the main results based on three years of research of four European research groups. The central theme of the work was the investigation of the effectiveness of the various screening compounds from the different species studied in order to gain some perspective of the evolutionary adaptations from lower to higher plant forms. The induction of mycosporine-like amino acids (MAAs) was studied in the marine dinoflagellate Gyrodinium dorsum, the green algal species Prasiola stipitata and in the cyanobacterium Anabaena sp. While visible (400-700 nm) and long wavelength UV-A (315-400 nm) showed only a slight effect, MAAs were effectively induced by UV-B (280-315 nm). The growth of the lower land organisms studied, i.e. the lichens Cladina portentosa, Cladina foliacaea and Cladonia arbuscula, and the club moss Lycopodiumannotinum, was not significantly reduced when grown under elevated UV-B radiation (simulating 15% ozone depletion). The growth in length of the moss Tortula ruralis was reduced under elevated UV-B. Of the aquatic plants investigated the charophytes Chara aspera showed decreased longitudinal growth under elevated UV-B. In the 'aquatic higher plants' studied, Ceratophyllum demersum, Batrachium trichophyllum and Potamogeton alpinus, there was no such depressed growth with enhanced UV-B. In Chara aspera, neither MAAs nor flavonoids could be detected. Of the terrestrial higher plants studied, Fagopyrum esculentum, Deschampsia antarctica, Vicia faba, Calamagrostis epigejos and Carex arenaria, the growth of the first species was depressed with enhanced UV-B, in the second species length growth was decreased, but the shoot number was increased, and in the latter two species of a dune grassland there was no reduced growth with enhanced UV-B. In the dune grassland species studied outdoors, at least five different flavonoids appeared in shoot tissue. Some of the flavonoids in the monocot species, which were identified and quantified with HPLC, included orientin, luteolin, tricin and apigenin. A greenhouse study with Vicia faba showed that two flavonoids (aglycones) respond particularly to enhanced UV-B. Of these, quercetin is UV-B inducible and mainly located in epidermal cells, while kaempferol occurs constitutively. In addition to its UV-screening function, quercetin may also act as an antioxidant. Polychromatic action spectra were determined for induction of the UV-absorbing pigments in three photosynthetic organisms, representing very different taxonomic groups and different habitats. In ultraviolet photobiology, action spectra mainly serve two purposes: (1) identification of the molecular species involved in light absorption; and (2) calculation of radiation amplification factors for assessing the effect of ozone depletion. Radiation amplification factors (RAFs) were calculated from the action spectra. In a somewhat simplified way, RAF can be defined as the percent increase of radiation damage for a 1% depletion of the ozone layer. Central European summer conditions were used in the calculations, but it has been shown that RAF values are not critically dependent on latitude or season. If only the ultraviolet spectral region is considered, the RAF values obtained are 0.7 for the green alga Prasiola stipitata, 0.4 for the dinoflagellate Gyrodinium dorsum, and 1.0 for the cyanobacterium Anabaena sp. In the case of P. stipitata, however, the effect of visible light (PAR, photosynthetically active radiation, 400-700 nm) is sufficient to lower the RAF to about 0.4, while the PAR effect for G. dorsum is negligible. RAFs for some damage processes, such as for DNA damage (RAF=2.1 if protective effects or photorepair are not considered [1]), are higher than those above. Our interpretation of this is that if the ozone layer is depleted, increased damaging radiation could overrule increased synthesis of protective pigments. In addition to investigating the functional effectiveness of the different screening compounds, direct UV effects on a number of key processes were also studied in order to gain further insight into the ability of the organisms to withstand enhanced UV-B radiation. To this end, the temperature-dependent repair of cyclobutane dimers (CPD) and (6-4) photoproducts induced by enhanced UV-B was studied in Nicotiana tabacum, and the UV-B induction of CPD was studied in the lichen Cladonia arbuscula. Also, photosynthesis and motility were monitored and the response related to the potential function of the screening compounds of the specific organism.  相似文献   

15.
Using a high-resolution reverse-phase liquid chromatography method we found that the tissues of the hermatypic coral Pocillopora capitata (collected in Santiago Bay, Mexico) contain a high diversity of primary and secondary mycosporine-like amino acids (MAAs) typical of some reef-building coral species: mycosporine–glycine, shinorine, porphyra-334, mycosporine–methylamine–serine, mycosporine–methylamine–threonine, palythine–serine, palythine and one additional novel predominant MAA, with an absorbance maximum of 320 nm. Here we document the isolation and characterization of this novel MAA from the coral P. capitata. Using low multi-stage mass analyses of deuterated and non deuterated compounds, high-resolution mass analyses (Time of Flight, TOF) and other techniques, this novel compound was characterized as palythine–threonine. Palythine–threonine was also present in high concentrations in the corals Pocillopora eydouxi and Stylophora pistillata indicating a wider distribution of this MAA among reef-building corals. From structural considerations we suggest that palythine–threonine is formed by decarboxylation of porphyra-334 followed by demethylation of mycosporine–methylamine–threonine.  相似文献   

16.
The photodegradation and photosensitization of several mycosporine-like amino acids (MAAs) were investigated. The photodegradation of the MAA, palythine, was tested with three photosensitizers: riboflavin, rose bengal and natural seawater. For comparison of degradation rates, the riboflavin-mediated photosensitization of six other MAAs was also examined. When riboflavin was used as a photosensitizer in distilled water, MAAs were undetectable after 1.5h. Palythine showed little photodegradation when rose bengal was added as the photosensitizer (k=0.12x10(-3)m(2)kJ(-1)). Palythine dissolved in natural seawater containing high nitrate concentrations also showed slow photodegradation rate constants (k=0.26x10(-3)m(2)kJ(-1)) over a 24-h period of constant irradiation. Similar experiments in deep seawater with porphyra-334 and shinorine resulted in 75% of the initial MAA remaining after 4h of irradiation and rates of 0.018 and 0.026x10(-3) m(2) kJ(-1), respectively. Experiments conducted in deep seawater with riboflavin additions resulted in photodegradation rate constants between 0.77x10(-3) and 1.19x10(-3)m(2)kJ(-1) for shinorine and porphyra-334, respectively. Photoproduct formation appeared to be minimal with the presence of a dehydration product of the cycloheximine ring structure indicated as well as the presence of amino acids. Evidence continues to build for the role of MAAs as potent and stable UV absorbers. This study further highlights the photostability of several MAAs in both distilled and seawater in the presence of photosensitizers.  相似文献   

17.
The effects of various irradiances of artificial UV-B (280-315 nm) in the presence or absence of visible light (photosynthetically active radiation) on growth, survival, 14CO2 uptake and ribulose 1,5-bisphosphate carboxylase (RuBISCO) activity were studied in the N2-fixing cyanobacterium Anabaena BT2. We tested the hypothesis whether or not visible radiation offers any protection against UV-B-induced deleterious effects on growth and photosynthesis in Anabaena BT2. Attempts were also made to determine the irradiances of UV-B where inhibitory effects could be mitigated by simultaneous irradiation with visible light. Exposure of cultures to 0.2 W m(-2) or higher irradiance of UV-B caused inhibition of growth and survival and growth ceased above 1.0 W m(-2). 14CO uptake and RuBISCO activity were found to be more sensitive to UV-B and around 60% reduction in 14CO2 uptake and RuBISCO activity occurred after exposure of cultures to 0.4 W m(-2) for 1 h. However, growth, 14CO2 uptake and RuBISCO activity were nearly normal when UV-B (0.4 W m(-2)) and visible light (14.4 W m(-2)) were given simultaneously. Blue radiation (450 nm) was found to be the most effective in photoreactivation against UV-B, better than UV-A or any other light wavelength band. Our results demonstrate that the studied cyanobacterium possesses active photoreactivation mechanism(s) against UV-B-mediated damage which in turn probably allow survival under natural conditions in spite of being continuously exposed to the UV-B component present in the solar radiation. Continued growth of many algae and cyanobacteria in the presence of intense solar UV-B radiation under natural conditions seems to be due to the active role of photoreactivation.  相似文献   

18.
Solar UV radiation (280-400 nm) may affect morphology of cyanobacteria, however, little has been evidenced on this aspect while their physiological responses were examined. We investigated the impacts of solar PAR and UVR on the growth, photosynthetic performance and morphology of the cyanobacterium Anabaena sp. PCC7120 while it was grown under three different solar radiation treatments: exposures to (a) constant low PAR (photosynthetic active radiation, 400-700 nm), (b) natural levels of solar radiation with and (c) without UV radiation (290-400 nm). When the cells were exposed to solar PAR or PAR+UVR, the photochemical efficiency was reduced by about 40% and 90%, respectively, on day one and recovered faster under the treatment without UVR over the following days. Solar UVR inhibited the growth up to 40%, reduced trichome length by up to 49% and depressed the differentiation of heterocysts. Negligible concentrations of UV-absorbing compounds were found even in the presence of UVR. During the first 2 d of exposure to natural levels of PAR, carotenoid concentrations increased but no prolonged increase was evident. Heterocyst formation was enhanced under elevated PAR levels that stimulated quantum yield and growth after an initial inhibition. Higher concentrations of carotenoids and a twofold increase in the carotenoid to chlorophyll a ratio provided protection from the high levels of solar PAR. Under radiation treatments with UVR the relatively greater decrease in chlorophyll a concentrations compared with the increase in carotenoids was responsible for the higher carotenoid: chlorophyll a ratio. Heterocyst formation was disrupted in the presence of solar UVR. However, the longer term impact of heterocyst disruption to the survival of Anabaena sp. requires further study.  相似文献   

19.
A photoprotective role of ultraviolet radiation-absorbing mycosporine-like amino acids (MAAs) in eggs of the green sea urchin Strongylocentrotus droebachiensis was demonstrated by comparing UV-induced delays in the first division of embryos having either high or low concentrations of MAAs. Embryos from adult urchins fed Laminaria saccharina (no MAAs) had low concentrations of MAAs and experienced a significantly longer UV-induced delay in cleavage (25.1%) than MAA-rich embryos from adults fed Mastocarpus stellatus (12.8% delay) or a combination diet of both macroalgae (12.3% delay). Collectively, these embryos displayed a significant inverse logarithmic relationship between MAA concentration and percentage cleavage delay, so that the greater the MAA concentration in the eggs, the less they were affected by UV radiation. This is the first study to examine such MAA manipulation of cellular MAA concentrations with no prior UV exposure of the experimental subjects. Concentrations of MAAs were also measured in unfertilized eggs, blastulae, gastrulae and early pluteus larvae, providing the first documentation of changes in MAAs during embryological and larval development. The concentration of shinorine (the principal MAA in the eggs) did not change during short-term UV exposure in vivo or long-term exposure in vitro; such photostability is a useful attribute of a natural sunscreen.  相似文献   

20.
The chlorophyte Prasiola stipitata produces a UV-absorbing substance with an absorption maximum at 324 nm. The wavelength-dependent induction of the synthesis of this substance was investigated using simulated solar radiation in combination with 15 cut-off and one broad-band filter. The algae were exposed from three different distances (89, 100 and 119 cm) to the solar simulator producing a maximum of 203.58, 1.24 and 46.86 W/m(2) and a minimum of 107.94, 0.64 and 24.44 W/m(2) irradiances for PAR, UV-B and UV-A, respectively. A polychromatic action spectrum was calculated from the pooled results showing a clear maximum at 300 nm in the long-wavelength UV-B range, but there is still some induction caused by UV-A and PAR. The ratio of the effectiveness from PAR to UV-A to UV-B amounts to 1:2:22.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号