首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transmission mode ion/ion reactions have been performed within the first quadrupole, the Q0 radiofrequency (RF)‐only quadrupole, of two types of hybrid tandem mass spectrometers (viz., triple quadrupole/linear ion trap and QqTOF instruments). These transmission mode reactions involved the storage of either the reagent species and the transmission of the analyte species through the Q0 quadrupole for charge inversion reactions or the storage of the analyte ions and transmission of the reagent ions as in charge reduction experiments. A key advantage to the use of transmission mode ion/ion reactions is that they do not require any instrument hardware modifications to provide interactions of oppositely charged ions and can be implemented in any instrument that contains a quadrupole or linear ion trap. The focus of this work was to investigate the potential of using the RF‐only quadrupole ion guide positioned prior to the first mass‐resolving element in a tandem mass spectrometer for ion/ion reactions. Two types of exemplary experiments have been demonstrated. One involved a charge inversion reaction and the other involved a charge reduction reaction in conjunction with ion parking. Ion/ion reactions proved to be readily implemented in Q0 thereby adding significantly greater experimental flexibility in the use of ion/ion reaction experiments with hybrid tandem mass spectrometers. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Ion/ion proton transfer reactions involving mutual storage of both ion polarities in a linear ion trap (LIT) that comprises part of a hybrid triple quadrupole/linear ion trap mass spectrometer have been effected. Mutual ion storage in the x- and y-dimensions arises from the normal operation of the oscillating quadrupole field of the quadrupole array, while storage in the z-dimension is enabled by applying unbalanced radio-frequency amplitudes to opposing sets of rods of the array. Efficient trapping (>90%) is achieved for thermalized ions over periods of several seconds. Reactions were demonstrated for multiply charged protein/peptide cations formed by electrospray with anions derived from glow discharge ionization of perfluoro(methyldecalin) (PMD) introduced from the side of the LIT rod array. Doubly and singly charged protein ions are readily formed via ion/ion reactions. The parameters that affect ion/ion reactions are discussed, including the degree of RF unbalance on the LIT rods, vacuum pressure, nature of the buffer gas, reaction time, anion abundance, and the low mass cutoff for ion/ion reaction. The present system has a demonstrated upper mass-to-charge ratio limit of at least 33,000. The system also has high flexibility with respect to defining MS(n) experiments involving both collision-induced dissociation (CID) and ion/ion reactions. Experiments are demonstrated involving beam-type CID in the pressurized collision quadrupole (Q2) followed by ion/ion reactions involving the product ions in the LIT. Ion parking experiments are also demonstrated using the mutual storage ion/ion reaction mode in the LIT, with a parking efficiency over 60%.  相似文献   

3.
The scope of gas-phase ion/ion chemistry accessible to mass spectrometry is largely defined by the available tools. Due to the development of novel instrumentation, a wide range of reaction phenomenologies has been noted, many of which have been studied extensively and exploited for analytical applications. This perspective presents the development of mass spectrometry-based instrumentation for the study of the gas-phase ion/ion chemistry in which at least one of the reactants is multiply charged. The instrument evolution is presented within the context of three essential elements required for any ion/ion reaction study: the ionization source(s), the reaction vessel or environment, and the mass analyzer. Ionization source arrangements have included source combinations that allow for reactions between multiply charged ions of one polarity and singly charged ions of opposite polarity, arrangements that enable the study of reactions of multiply charged ions of opposite polarity and, most recently, arrangements that allow for ion formation from more than two ion sources. Gas-phase ion/ion reaction studies have been performed at near atmospheric pressure in flow reactor designs and within electrodynamic ion traps operated in the mTorr range. With ion trap as a reaction vessel, ionization and reaction processes can be independently optimized and ion/ion reactions can be implemented within the context of MSn experiments. Spatial separation of the reaction vessel from the mass analyzer allows for the use of any form of mass analysis in conjunction with ion/ion reactions. Time-of-flight mass analysis, for example, has provided significant improvements in mass analysis figures of merit relative to mass filters and ion traps.  相似文献   

4.
An approach is described to increase the degree of protonation of a polypeptide ion in the gas phase. Sequential charge inversion reactions involving the reactions of oppositely charged ions are used to yield a net increase in ion charge. The approach is illustrated here with the conversion of singly protonated bradykinin to doubly protonated bradykinin. The first step involves conversion of the singly protonated peptide to the singly deprotonated peptide via reactions with multiply charged anions derived from carboxylate-terminated dendrimers. Some of the singly deprotonated peptide was then converted to doubly protonated peptide via reactions with multiply charged cations derived from amino-terminated dendrimers. The overall approach is illustrative of a general strategy for increasing the absolute charge states of large ions in the gas phase.  相似文献   

5.
A linear ion trap (LIT) with electrospray ionization (ESI) for top-down protein analysis has been constructed. An independent atmospheric sampling glow discharge ionization (ASGDI) source produces reagent ions for ion/ion reactions. The device is also meant to enable a wide variety of ion/ion reaction studies. To reduce the instrument's complexity and make it available for wide dissemination, only a few simple electronics components were custom built. The instrument functions as both a reaction vessel for gas-phase ion/ion reactions and a mass spectrometer using mass-selective axial ejection. Initial results demonstrate trapping efficiency of 70% to 90% and the ability to perform proton transfer reactions on intact protein ions, including dual polarity storage reactions, transmission mode reactions, and ion parking.  相似文献   

6.
A home-made extractive electrospray ionization source is coupled to an linear quadrupole ion trap mass spectrometer to investigate ion/molecule reactions of biopolymers at ambient pressure. Multiply charged biopolymers such as peptides and proteins generated in an electrospray are easily reduced to a low charge state by the atmospheric pressure ion/molecule reactions occurring between the multiply charged ions and a strong basic reagent sprayed in neutral form into the electrospray plume. The charge state of the biopolymer ions can be manipulated by controlling the amount of the basic reagent. The production of biopolymer ions with low charge states results in a substantial improvement of sensitivity and reduced spectral congestion in ESI-MS. This is of importance for biopolymer mixture analysis and could have promising applications in proteomics.  相似文献   

7.
Means for effecting dipolar direct current collision-induced dissociation (DDC CID) on a quadrupole/time-of-flight in a mass spectrometer have been implemented for the broadband dissociation of a wide range of analyte ions. The DDC fragmentation method in electrodynamic storage and transmission devices provides a means for inducing fragmentation of ions over a large mass-to-charge range simultaneously. It can be effected within an ion storage step in a quadrupole collision cell that is operated as a linear ion trap or as ions are continuously transmitted through the collision cell. A DDC potential is applied across one pair of rods in the quadrupole collision cell of a QqTOF hybrid mass spectrometer to effect fragmentation. In this study, ions derived from a small drug molecule, a model peptide, a small protein, and an oligonucleotide were subjected to the DDC CID method in either an ion trapping or an ion transmission mode (or both). Several key experimental parameters that affect DDC CID results, such as time, voltage, low mass cutoff, and bath gas pressure, are illustrated with protonated leucine enkephalin. The DDC CID dissociation method gives a readily tunable, broadband tool for probing the primary structures of a wide range of analyte ions. The method provides an alternative to the narrow resonance conditions of conventional ion trap CID and it can access more extensive sequential fragmentation, depending upon conditions. The DDC CID approach constitutes a collision analog to infrared multiphoton dissociation (IRMPD).  相似文献   

8.
Targeted ion parking (or TIPing) is the first quantitative application of ion/ion reactions for mass spectrometry. In TIPing, intact biotherapeutic proteins are electrosprayed as intact molecules (no digestion) and, as expected, many multiply protonated species are produced (e.g., (M + 7H)7+, (M + 8H)8+, etc.). Several of these multiply charged species are selectively isolated using a quadrupole mass analyzer and then contained in a linear ion trap. The protein ions are then subjected to a proton-transfer reaction with a reagent anion. The ions undergo sequential charge reduction (e.g., to (M + 6H)6+) during a defined reaction period. Applying a low-amplitude waveform to the trap during this reaction time stops the ion/ion reaction at a chosen (and predicted) charge state for the protein. This funnels the analyte ions into a single channel with relatively high efficiency (>-50% of reactant ion signal is converted into product ion signal) that can be used for quantitation. In TIPing, the target protein’s molecular weight and charge state distribution are the only prerequisite knowledge required. This information can be acquired experimentally or can be easily predicted based upon amino acid sequences. Preliminary data for a biotherapeutic protein, a domain antibody, were collected using TIPing coupled online with liquid chromatography (LC-TIPing). The LC-TIPing data demonstrate a linear response for samples from 10–1000 ng/mL extracted from a complex plasma sample, demonstrating the analytical potential for TIPing.  相似文献   

9.
A pulsed triple ionization source, using a common atmosphere/vacuum interface and ion path, has been developed to generate different types of ions for sequential ion/ion reaction experiments in a linear ion trap-based tandem mass spectrometer. The triple ionization source typically consists of a nano-electrospray emitter for analyte formation and two other emitters, an electrospray emitter and an atmospheric pressure chemical ionization emitter or a second nano-electrospray emitter for formation of the two different reagent ions. The three emitters are positioned in a parallel fashion close to the sampling orifice of the tandem mass spectrometer. The potentials applied to each emitter are sequentially pulsed so that desired ions are generated separately in time and space. Sequential ion/ion reactions take place after analyte ions of interest and different set of reagent ions are sequentially injected into a linear ion trap, where axial trapping is effected by applying an auxiliary radio frequency voltage to the end lenses. The pulsed triple ionization source allows independent optimization of each emitter and can be readily coupled to any atmospheric pressure ionization interface with no need for instrument modifications, provided the potentials required to transmit the ion polarity of interest can be synchronized with the emitter potentials. Several sequential ion/ion reactions examples are demonstrated to illustrate the analytical usefulness of the triple ionization source in the study of gas-phase ion/ion chemistry.  相似文献   

10.
A new technique to generate product ion spectra as the internal energy of a collisionally activated precursor ion evolves is described. The precursor ion is activated by acceleration into a mass-selective linear ion trap under conditions whereby some of the fragment ions formed are unstable within the trap. After a time delay the stability parameters of the ion trap are changed to allow capture of fragments that that were previously unstable. The result is a product ion spectrum that originates from precursor ions with a modified internal energy distribution. It is possible to follow the evolution of the precursor internal energy distribution for many milliseconds after admittance of the precursor ions into the linear ion trap. Time-delayed fragmentation product ion spectra typically display reduced sequential fragmentation products leading to spectra that are more easily interpreted. Several important experimental parameters important to time-delayed fragmentation have been identified and are discussed. The technique has applications for both small precursor ions and multiply charged peptides.  相似文献   

11.
A simple device is described for desolvation of highly charged matrix/analyte clusters produced by laser ablation leading to multiply charged ions that are analyzed by ion mobility spectrometry-mass spectrometry. Thus, for example, highly charged ions of ubiquitin and lysozyme are cleanly separated in the gas phase according to size and mass (shape and molecular weight) as well as charge using Tri-Wave ion mobility technology coupled to mass spectrometry. This contribution confirms the mechanistic argument that desolvation is necessary to produce multiply charged matrix-assisted laser desorption/ionization (MALDI) ions and points to how these ions can be routinely formed on any atmospheric pressure mass spectrometer.  相似文献   

12.
Doubly protonated peptides that undergo an electron transfer reaction without dissociation in a linear ion trap can be subjected to beam-type collisional activation upon transfer from the linear ion trap into an adjacent mass analyzer, as demonstrated here with a hybrid triple quadrupole/linear ion trap system. The activation can be promoted by use of a DC offset difference between the ion trap used for reaction and the ion trap into which the products are injected of 12-16 V, which gives rise to energetic collisions between the transferred ions and the collision/bath gas employed in the linear ion trap used for ion/ion reactions. Such a process can be executed routinely on hybrid linear ion trap/triple quadrupole tandem mass spectrometers and is demonstrated here with several model peptides as well as a few dozen tryptic peptides. Collisional activation of the peptide precursor ions that survive electron transfer frequently provides structural information that is absent from the precursor ions that fragment spontaneously upon electron transfer. The degree to which additional structural information is obtained by collisional activation of the surviving singly charged peptide ions depends upon peptide size. Little or no additional structural information is obtained from small peptides (<8 residues) due to the high electron transfer dissociation (ETD) efficiencies noted for these peptides as well as the extensive sequence information that tends to be forthcoming from ETD of such species. Collisional activation of the surviving electron transfer products provided greatest benefit for peptides of 8-15 residues.  相似文献   

13.
Collisional cooling in radio frequency (RF) ion guides has been used in mass spectrometry as an intermediate step during the transport of ions from high pressure regions of an ion source into high vacuum regions of a mass analyzer. Such collisional cooling devices are also increasingly used as 'linear', two-dimensional (2D) ion traps for ion storage and accumulation to achieve improved sensitivity and dynamic range. We have used the effective potential approach to study m/z dependent distribution of ions in the devices. Relationships obtained for the ideal 2D multipole demonstrate that after cooling the ion cloud forms concentric cylindrical layers, each of them composed of ions having the same m/z ratio; the higher the m/z, the larger is the radial position occupied by the ions. This behavior results from the fact that the effective RF focusing is stronger for ions of lower m/z, pushing these ions closer to the axis. Radial boundaries of the layers are more distinct for multiply charged ions, compared to singly charged ions having the same m/z and charge density. In the case of sufficiently high ion density and low ion kinetic energy, we show that each m/z layer is separated from its nearest neighbor by a radial gap of low ion density. The radial gaps of low ion population between the layers are formed due to the space charge repulsion. Conditions for establishing the m/z stratified structure include sufficiently high charge density and adequate collisional relaxation. These conditions are likely to occur in collisional RF multipoles operated as ion guides or 2D ion traps for external ion accumulation. When linear ion density increases, the maximum ion cloud radius also increases, and outer layers of high m/z ions approach the multipole rods and may be ejected. This 'overfilling' of the multipole capacity results in a strong discrimination against high m/z ions. A relationship is reported for the maximum linear ion density of a multipole that is not overfilled.  相似文献   

14.
A pulsed dual electrospray ionization source has been developed to generate positive and negative ions for subsequent ion/ion reaction experiments. The two sprayers, typically a nano-electrospray emitter for analytes and an electrospray emitter for reagents, are positioned in a parallel fashion close to the sampling orifice of a triple quadrupole/linear ion trap tandem mass spectrometer (Sciex Q TRAP). The potentials applied to each sprayer are alternately pulsed so that ions of opposite polarity are generated separately in time. Ion/ion reactions take place after ions of each polarity are sequentially injected into a high-pressure linear ion trap, where axial trapping is effected by applying an auxiliary radio frequency voltage to the end lenses. The pulsed dual electrospray source allows optimization of each sprayer and can be readily coupled to any spray interface with no need for instrument modifications, provided the potentials required to transmit the ion polarity of interest can be alternated in synchrony with the emitter potentials. Ion/ion reaction examples such as charge reduction of multiply charged protein ions, charge inversion of peptides ions, and protein-protein complex formation are given to illustrate capabilities of the pulsed dual electrospray source in the study of gas-phase ion/ion chemistry.  相似文献   

15.
It is well-known that matrix effects in high performance liquid chromatography coupled to electrospray ionization mass spectrometry (HPLC-ESI-MS) can seriously compromise quantitative analysis and affect method reproducibility. Paired ion electrospray ionization (PIESI) mass spectrometry is an approach for analyzing ultra-low levels of anions in the positive ion mode. This approach uses a structurally optimized ion pairing reagent to post-column associate with the anionic analyte, subsequently forming positively charged complexes. These newly formed complex ions are often more surface-active as compared to either the native anion or the ion pairing reagent. No studies have examined whether or not the PIESI approach mitigates matrix effects. Consequently, a controlled study was done using five analytes in highly controlled and reproducible synthetic groundwater and urine matrices. In addition, two different mass spectrometers (linear ion trap and triple quadrupole) were used. Compared to the negative ion mode, the PIESI-MS approach was less susceptible to matrix effects when performed on two different MS platforms. Using PIESI-MS, less dilution of the sample is needed to eliminate ionization suppression which, in turn, permits lower limits of detection and quantitation.  相似文献   

16.
Multiply charged poly(ethylene glycol) ions of the form (M+nNa) n+ derived from electrospray ionization have been subjected to reactions with negative ions in the quadrupole ion trap. Mixtures of multiply charged positive ions ranging in average mass from about 2000 to about 14,000 Da were observed to react with perfluorocarbon anions by either proton transfer or fluoride transfer. Iodide anions reacted with the same positive ions by attachment. In no case was fragmentation of the polymer ion observed. In all cases, the multiply charged positive ion charge states could be readily reduced to +1, thereby eliminating the charge state overlap observed in the normal electrospray mass spectrum. With all three reaction mechanisms, however, the +1 product ions were comprised of mixtures of products with varying numbers of sodium ions, and in the case of iodide attachment and fluoride transfer, varying numbers of halogen anions. These reactions shift the mass distributions to higher masses and broaden the distributions. The extents to which these effects occur are functions of the magnitudes of the initial charges and the width of the initial charge state distributions. Care must be taken in deriving information about the polymer molecular weight distribution from the singly charged product ions arising from these ion/ion reactions. The cluster ions containing iodide were shown to be intermediates in sodium ion transfer. Dissociation of the adduct ions can therefore lead to a +1 product ion population that is comprised predominantly of M+Na+ ions. However, a strategy based on the dissociation of the iodide cluster ions is limited by difficulties in dissociating high mass-to-charge ions in the quadrupole ion trap.  相似文献   

17.
Contributions of higher-order fields to the quadrupolar storage field produce nonlinear resonances in the quadrupole ion trap. Storing ions with secular frequencies corresponding to these nonlinear resonances allows adsorption of power from the higher-order fields. This results in increased axial and radial amplitudes which can cause ion ejection and collision-induced dissociation (CID). Experiments employing long storage times and/or high ion populations, such as chemical ionization, ion-molecule reaction studies, and resonance excitation CID, can be particularly susceptible to nonlinear resonance effects. The effects of higher-order fields on stored ions are presented and the influence of instrumental parameters such as radiofrequency and direct current voltage (qz and az values), ion population, and storage time are discussed.  相似文献   

18.
The multistage mass spectrometric (MS/MS and MS3) gas-phase fragmentation reactions of methionine side-chain sulfonium ion containing peptides formed by reaction with a series of para-substituted phenacyl bromide (XBr where X=CH2COC6H4R, and R=--COOH, --COOCH3, --H, --CH3 and --CH2CH3) alkylating reagents have been examined in a linear quadrupole ion trap mass spectrometer. MS/MS of the singly (M+) and multiply ([M++nH](n+1)+) charged precursor ions results in exclusive dissociation at the fixed charge containing side chain, independently of the amino acid composition and precursor ion charge state (i.e., proton mobility). However, loss of the methylphenacyl sulfide side-chain fragment as a neutral versus charged (protonated) species was observed to be highly dependent on the proton mobility of the precursor ion, and the identity of the phenacyl group para-substituent. Molecular orbital calculations were performed at the B3LYP/6-31+G** level of theory to calculate the theoretical proton affinities of the neutral side-chain fragments. The log of the ratio of neutral versus protonated side-chain fragment losses from the derivatized side chain were found to exhibit a linear dependence on the proton affinity of the side-chain fragmentation product, as well as the proton affinities of the peptide product ions. Finally, MS3 dissociation of the nominally identical neutral and protonated loss product ions formed by MS/MS of the [M++H]2+ and [M++2H]3+ precursor ions, respectively, from the peptide GAILM(X)GAILK revealed significant differences in the abundances of the resultant product ions. These results suggest that the protonated peptide product ions formed by gas-phase fragmentation of sulfonium ion containing precursors in an ion trap mass spectrometer do not necessarily undergo intramolecular proton 'scrambling' prior to their further dissociation, in contrast to that previously demonstrated for peptide ions introduced by external ionization sources.  相似文献   

19.
Herein we describe a new method, targeted enhanced multiply charged scans (tEMC), for the quantification of therapeutic peptides in tandem mass spectrometry on the linear ion trap mass spectrometer. Therapeutic peptides with chain lengths between eight and 39 amino acid residues and charge states from 2+ to 6+ were used to evaluate and illustrate the method which relies on the ability to separate ions trapped in a linear ion trap according to their charges. In particular, interference from singly charged ions on multiply charged ions can be effectively minimized. The method requires optimization of relatively few parameters, the most important of which being the exit lens barrier (EXB) voltage, thereby offering substantial time saving in a high-throughput quantification environment that currently relies on selected reaction monitoring.  相似文献   

20.
Capillary high-performance liquid chromatography has been coupled on-line with an ion trap storage/reflectron time-of-flight mass spectrometer to perform tandem mass spectrometry for tryptic peptides. Selection and fragmentation of the precursor ions were performed in a three-dimensional ion trap, and the resulting fragment ions were pulsed out of the trap into a reflectron time-of-flight mass spectrometer for mass analysis. The stored waveform inverse Fourier transform waveform was applied to perform ion selection and an improved tickle voltage optimization scheme was used to generate collision-induced dissociation. Tandem mass spectra of various doubly charged tryptic peptides were investigated where a conspicuous y ion series over a certain mass range defined a partial amino acid sequence. The partial sequence was used to determine the identity of the peptide or even the protein by database search using the sequence tag approach. Several peptides from tryptic digests of horse heart myoglobin and bovine cytochrome c were selected for tandem mass spectrometry (MS/MS) where it was demonstrated that the proteins could be identified based on sequence tags derived from MS/MS spectra. This approach was also utilized to identify protein spots from a two-dimensional gel separation of a human esophageal adenocarcinoma cell line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号