首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Oligonucleotides (ONs) modified with a 2'-N-(pyren-1-yl)acetyl-2'-amino-alpha-L-LNA thymine monomer Y flanked on the 3'-side by an abasic site Phi (i.e., YPhi-unit) exhibit unprecedented increases in thermal affinity (DeltaT(m) values) toward target strands containing abasic sites (DeltaT(m) per YPhi unit >+33.0 degrees C in 9-mer duplexes relative to unmodified ONs). Biophysical studies along with force field calculations suggest that the conformationally locked 2-oxo-5-azabicyclo[2.2.1]heptane skeleton of monomer Y, in concert with the short rigid acetyl linker, efficiently forces the thymine and pyrene moieties to adopt an interplanar distance of approximately 3.4 A. This precisely positions the pyrene moiety in the duplex core void formed by abasic sites (Phi:Phi pair) for optimal pi-pi overlap. Duplexes with multiple YPhi: APhi units separated by one base pair are tolerated extraordinarily well, as exemplified by a 13-mer duplex containing four separated YPhi: APhi units (8 abasic sites distributed over 13 "base pairs"), which exhibit a thermal denaturation temperature of 60.5 degrees C. The YPhi probes display up to 16-fold increases in fluorescence intensity at 380 nm upon hybridization with abasic target strands, whereby self-assembly of these complex architectures can be easily monitored. This study underlines the potential of N2'-functionalized 2'-amino-alpha-L-LNA as building blocks in nucleic acid based diagnostics and nanomaterial engineering.  相似文献   

2.
The recognition properties of DNA duplexes containing single or triple incorporations of eight different donor-modified (OMe, NH(2)) and acceptor-modified (NO(2)) biphenyl residues as base replacements in opposite positions were probed by UV-melting and by CD and fluorescence spectroscopy. We found a remarkable dependence of duplex stability on the natures of the substituents (donor vs. acceptor). The stabilities of duplexes with one biphenyl pair increase in the order donor/donor < acceptor/donor < acceptor/acceptor substitution. The most stable biphenyl pairs stabilize duplexes by up to 6 degrees C in T(m). In duplexes with three consecutive biphenyl pairs the stability increases in the inverse order (acceptor/acceptor < donor/acceptor < donor/donor) with increases in T(m), relative to an unmodified duplex, of up to 10 degrees C. A thermodynamic analysis, combined with theoretical calculations of the physical properties of the biphenyl substituents, suggests that in duplexes with single biphenyl pairs the affinity is dominated by electrostatic forces between the biphenyl/nearest neighbor natural base pairs, whereas in the triple-modified duplexes the increase in thermal stability is predominantly determined by hydrophobic interactions of the biphenyl residues with each other. Oligonucleotides containing amino biphenyl residues are fluorescent. Their fluorescence is largely quenched when they are paired with themselves or with nitrobiphenyl-containing duplex partners.  相似文献   

3.
Hydrogen-bonding and stacking interactions between nucleobases are considered to be the major noncovalent interactions that stabilize the DNA and RNA double helices. In recent work we found that one or multiple biphenyl pairs, devoid of any potential for hydrogen bond formation, can be introduced into a DNA double helix without loss of duplex stability. We hypothesized that interstrand stacking interactions of the biphenyl residues maintain duplex stability. Here we present an NMR structure of the decamer duplex d(GTGACXGCAG) d(CTGCYGTCAC) that contains one such X/Y biaryl pair. X represents a 3',5'-dinitrobiphenyl- and Y a 3',4'-dimethoxybiphenyl C-nucleoside unit. The experimentally determined solution structure shows a B-DNA duplex with a slight kink at the site of modification. The biphenyl groups are intercalated side by side as a pair between the natural base pairs and are stacked head to tail in van der Waals contact with each other. The first phenyl rings of the biphenyl units each show tight intrastrand stacking to their natural base neighbors on the 3'-side, thus strongly favoring one of two possible interstrand intercalation structures. In order to accommodate the biphenyl units in the duplex the helical pitch is widened while the helical twist at the site of modification is reduced. Interestingly, the biphenyl rings are not static in the duplex but are in dynamic motion even at 294 K.  相似文献   

4.
Short DNA duplexes containing an N(4)C-ethyl-N(4)C interstrand cross-link, C-C, were synthesized on controlled pore glass supports. Duplexes having two, three, or four A/T base pairs on either side of the C-C cross-link and terminating with a C(4) overhang at their 5'-ends were prepared. The cross-link was introduced using a convertible nucleoside approach. Thus, an oligonucleotide terminating at its 5'-end with O(4)-triazoyl-2'-deoxyuridine was first prepared on the support. The triazole group of support-bound oligomer was displaced by the aminoethyl group of 5'-dimethoxytrityl-3'-O-tert-butyldimethylsilyl-N(4)-(2-aminoethyl)deoxycytidine to give the cross-link. The dimethoxytrityl group was removed, and the upper and lower strands of the duplex were extended from two 5'-hydroxyl groups of the cross-link using protected nucleoside 3'-phosphoramidites. The tert-butyldimethylsilyl group of the resulting partial duplex was then removed, and the chain was extended in the 3'-direction from the resulting 3'-hydroxyl of the cross-link using protected nucleoside 5'-phosphoramidites. The cross-linked duplexes were purified by HPLC and characterized by enzymatic digestion and MALDI-TOF mass spectrometry. Duplexes with three or four A/T base pairs on either side of the C-C cross-link gave sigmoidal shaped A(260) profiles when heated, a behavior consistent with cooperative denaturation of the A/T base pairs. Each cross-linked duplex could be ligated to an acceptor duplex using T4 DNA ligase, a result that suggests that the C-C cross-link does not interfere with the ligation reaction, even when it is located only two base pairs from the site of ligation. The ability to synthesize duplexes with a defined interstrand cross-link and to incorporate these duplexes into longer pieces of DNA should enable preparation of substrates that can be used for a variety of biophysical and biochemical experiments, including studies of DNA repair.  相似文献   

5.
In this study, we investigated the stability and structure of artificial base pairs that contain cyclohexyl rings. The introduction of a single pair of isopropylcyclohexanes into the middle of DNA slightly destabilized the duplex. Interestingly, as the number of the "base pairs" increased, the duplex was remarkably stabilized. A duplex with six base pairs was even more stable than one containing six A-T pairs. Thermodynamic analysis revealed that changes in entropy and not enthalpy contributed to duplex stability, demonstrating that hydrophobic interactions between isopropyl groups facilitated the base pairing, and thus stabilized the duplex. NOESY of a duplex containing an isopropylcyclohexane-methylcyclohexane pair unambiguously demonstrated its "pairing" in the duplex because distinct NOEs between the protons of cyclohexyl moieties and imino protons of both of the neighboring natural base pairs were observed. CD spectra of duplexes tethering cyclohexyl moieties also showed a positive-negative couplet that is characteristic of the B-form DNA duplex. Taken together, these results showed that cyclohexyl moieties formed base pairs in the DNA duplex without severely disturbing the helical structure of natural DNA. Next, we introduced cyclohexyl base pairs between pyrene and nucleobases as an "insulator" that suppresses electron transfer between them. We found a massive increase in the quantum yield of pyrene due to the efficient shielding of pyrene from nucleobases. The cyclohexyl base pairs reported here have the potential to prepare highly fluorescent labeling agents by multiplying fluorophores and insulators alternately into DNA duplexes.  相似文献   

6.
Peptide nucleic acid (PNA) is a synthetic analogue of DNA that commonly has an N‐aminoethyl glycine backbone. The crystal structures of two PNA duplexes, one containing eight standard nucleobase pairs (GGCATGCC)2, and the other containing the same nucleobase pairs and a central pair of bipyridine ligands, have been solved with a resolution of 1.22 and 1.10 Å, respectively. The non‐modified PNA duplex adopts a P‐type helical structure similar to that of previously characterized PNAs. The atomic‐level resolution of the structures allowed us to observe for the first time specific modes of interaction between the terminal lysines of the PNA and the backbone and the nucleobases situated in the vicinity of the lysines, which are considered an important factor in the induction of a preferred handedness in PNA duplexes. Our results support the notion that whereas PNA typically adopts a P‐type helical structure, its flexibility is relatively high. For example, the base‐pair rise in the bipyridine‐containing PNA is the largest measured to date in a PNA homoduplex. The two bipyridines bulge out of the duplex and are aligned parallel to the major groove of the PNA. In addition, two bipyridines from adjacent PNA duplexes form a π‐stacked pair that relates the duplexes within the crystal. The bulging out of the bipyridines causes bending of the PNA duplex, which is in contrast to the structure previously reported for biphenyl‐modified DNA duplexes in solution, where the biphenyls are π stacked with adjacent nucleobase pairs and adopt an intrahelical geometry. This difference shows that relatively small perturbations can significantly impact the relative position of nucleobase analogues in nucleic acid duplexes.  相似文献   

7.
The synthesis and thermal stability of oligodeoxynucleotides (ODNs) containing imidazo[5',4':4,5]pyrido[2,3-d]pyrimidine nucleosides 1-4 (N(N), O(O), N(O), and O(N), respectively) with the aim of developing two sets of new base pairing motifs consisting of four hydrogen bonds (H-bonds) is described. The proposed four tricyclic nucleosides 1-4 were synthesized through the Stille coupling reaction of a 5-iodoimidazole nucleoside with an appropriate 5-stannylpyrimidine derivative, followed by an intramolecular cyclization. These nucleosides were incorporated into ODNs to investigate the H-bonding ability. When one molecule of the tricyclic nucleosides was incorporated into the center of each ODN (ODN I and II, each 17mer), no apparent specificity of base pairing was observed, and all duplexes were less stable than the duplexes containing natural G:C and A:T pairs. On the other hand, when three molecules of the tricyclic nucleosides were consecutively incorporated into the center of each ODN (ODN III and IV, each 17mer), thermal and thermodynamic stabilization of the duplexes due to the specific base pairings was observed. The melting temperature (T(m)) of the duplex containing the N(O):O(N) pairs showed the highest T(m) of 84.0 degrees C, which was 18.2 and 23.5 degrees C higher than that of the duplexes containing G:C and A:T pairs, respectively. This result implies that N(O)and O(N) form base pairs with four H-bonds when they are incorporated into ODNs. The duplex containing N(O):O(N) pairs was markedly stabilized by the assistance of the stacking ability of the imidazopyridopyrimidine bases. Thus, we developed a thermally stable new base pairing motif, which should be useful for the stabilization and regulation of a variety of DNA structures.  相似文献   

8.
Pyrimidine base pairs in DNA duplexes selectively capture metal ions to form metal ion-mediated base pairs, which can be evaluated by thermal denaturation, isothermal titration calorimetry, and nuclear magnetic resonance spectroscopy. In this critical review, we discuss the metal ion binding of pyrimidine bases (thymine, cytosine, 4-thiothymine, 2-thiothymine, 5-fluorouracil) in DNA duplexes. Thymine-thymine (T-T) and cytosine-cytosine (C-C) base pairs selectively capture Hg(II) and Ag(I) ions, respectively, and the metallo-base pairs, T-Hg(II)-T and C-Ag(I)-C, are formed in DNA duplexes. The metal ion binding properties of the pyrimidine-pyrimidine pairs can be changed by small chemical modifications. The binding selectivity of a metal ion to a 5-fluorouracil-5-fluorouracil pair in a DNA duplex can be switched by changing the pH of the solution. Two silver ions bind to each thiopyrimidine-thiopyrimidine pair in the duplexes, and the duplexes are largely stabilized. Oligonucleotides containing these bases are commercially available and can readily be applied in many scientific fields (86 references).  相似文献   

9.
By using high-resolution NMR spectroscopy, the structures of a natural short interfering RNA (siRNA) and of several altritol nucleic acid (ANA)-modified siRNAs were determined. The interaction of modified siRNAs with the PAZ domain of the Argonaute 2 protein of Drosophila melanogaster was also studied. The structures show that the modified siRNA duplexes (ANA/RNA) adopt a geometry very similar to the naturally occurring A-type siRNA duplex. All ribose residues, except for the 3' overhang, show 3'-endo conformation. The six-membered altritol sugar in ANA occurs in a chair conformation with the nucleobase in an axial position. In all siRNA duplexes, two overhanging nucleotides at the 3' end enhance the stability of the first neighboring base pair by a stacking interaction. The first overhanging nucleotide has a rather fixed position, whereas the second overhanging nucleotide shows larger flexibility. NMR binding studies of the PAZ domain with ANA-modified siRNAs demonstrate that modifications in the double-stranded region of the antisense strand have some small effects on the binding affinity as compared with the unmodified siRNA. Modification of the 3' overhang with thymidine (dTdT) residues shows a sixfold increase in the binding affinity compared with the unmodified siRNA (relative binding affinity of 17% compared with dTdT-modified overhang), whereas modification of the 3' overhang with ANA largely decreases the binding affinity.  相似文献   

10.
We report the properties of hydrophobic isosteres of pyrimidines and purines in synthetic DNA duplexes. Phenyl nucleosides 1 and 2 are nonpolar isosteres of the natural thymidine nucleoside, and indole nucleoside 3 is an analog of the complementary purine 2-aminodeoxyadenosine. The nucleosides were incorporated into synthetic oligodeoxynucleotides and were paired against each other and against the natural bases. Thermal denaturation experiments were used to measure the stabilities of the duplexes at neutral pH. It is found that the hydrophobic base analogs are nonselective in pairing with the four natural bases but selective for pairing with each other rather than with the natural bases. For example, compound 2 selectively pairs with itself rather than with A, T, G, or C; the magnitude of this selectivity is found to be 6.5-9.3 °C in Tm or 1.5-1.8 kcal/mol in free energy (25 °C). All possible hydrophobic pairing combinations of 1, 2, and 3 were examined. Results show that the pairing affinity depends on the nature of the pairs and on position in the duplex. The highest affinity pairs are found to be the 1-1 and 2-2 self-pairs and the 1-2 heteropair. The best stabilization occurs when the pairs are placed at the ends of duplexes rather than internally; the internal pairs may be destabilized by imperfect steric mimicry which leads to non-ideal duplex structure. In some cases the hydrophobic pairs are significantly stabilizing to the DNA duplex; for example, when situated at the end of a duplex, the 1-1 pair is more stabilizing than a T-A pair. When situated internally, the affinity of the 1-1 pair is the same as, or slightly better than, the analogous T-T mismatch pair, which is known to have two hydrogen bonds. The studies raise the possibility that hydrogen bonds may not always be required for the formation of stable duplex DNA-like structure. In addition, the results point out the importance of solvation and desolvation in natural base pairing, and lend new support to the idea that hydrogen bonds in DNA may be more important for specificity of pairing than for affinity. Finally, the study raises the possibility of using these or related base pairs to expand the genetic code beyond the natural A-T and G-C pairs.  相似文献   

11.
Matthias Stoop 《Tetrahedron》2007,63(17):3440-3449
The synthesis of the novel, fluorescent 3-aminobiphenyl-C-nucleoside M as well as the corresponding building block for oligodeoxynucleotide synthesis is described. M was incorporated into oligodeoxynucleotides via standard phosphoramidite chemistry and the thermal stabilities of duplexes with one and three consecutive M-M, M-P, and M-O pairs, where P denotes an unmodified biphenyl C-nucleoside and O a 3,5-dinitrobiphenyl-C-nucleoside, were determined. It was found that duplexes containing three consecutive M-O pairs were the most stable in the series, notably more stable than a duplex with one additional natural G-C pair instead of the modified residues. Furthermore it was found that the fluorescence of M is efficiently quenched in a duplex when placed opposite to the dinitrophenyl unit O. Thus M and O constitute a novel fluorophore/quencher pair that is orthogonal to natural base pairs in its recognition properties enabling its use as highly specific tags with reporting properties.  相似文献   

12.
Metallo‐base pairs have been extensively studied for applications in nucleic acid‐based nanodevices and genetic code expansion. Metallo‐base pairs composed of natural nucleobases are attractive because nanodevices containing natural metallo‐base pairs can be easily prepared from commercially available sources. Previously, we have reported a crystal structure of a DNA duplex containing T HgII T base pairs. Herein, we have determined a high‐resolution crystal structure of the second natural metallo‐base pair between pyrimidine bases C AgI C formed in an RNA duplex. One AgI occupies the center between two cytosines and forms a C AgI C base pair through N3 AgI N3 linear coordination. The C AgI C base pair formation does not disturb the standard A‐form conformation of RNA. Since the C AgI C base pair is structurally similar to the canonical Watson–Crick base pairs, it can be a useful building block for structure‐based design and fabrication of nucleic acid‐based nanodevices.  相似文献   

13.
Metallo‐base pairs have been extensively studied for applications in nucleic acid‐based nanodevices and genetic code expansion. Metallo‐base pairs composed of natural nucleobases are attractive because nanodevices containing natural metallo‐base pairs can be easily prepared from commercially available sources. Previously, we have reported a crystal structure of a DNA duplex containing T? HgII? T base pairs. Herein, we have determined a high‐resolution crystal structure of the second natural metallo‐base pair between pyrimidine bases C? AgI? C formed in an RNA duplex. One AgI occupies the center between two cytosines and forms a C? AgI? C base pair through N3? AgI? N3 linear coordination. The C? AgI? C base pair formation does not disturb the standard A‐form conformation of RNA. Since the C? AgI? C base pair is structurally similar to the canonical Watson–Crick base pairs, it can be a useful building block for structure‐based design and fabrication of nucleic acid‐based nanodevices.  相似文献   

14.
This paper describes the design of novel base-discriminating fluorescent (BDF) nucleobases and their application to single nucleotide polymorphism (SNP) typing. We devised novel BDF nucleosides, (Py)U and (Py)C, which contain a pyrenecarboxamide chromophore connected by a propargyl linker. The fluorescence spectrum of the duplex containing a (Py)U/A base pair showed a strong emission at 397 nm on 327 nm excitation. In contrast, the fluorescence of duplexes containing (Py)U/N base pairs (N = C, G, or T) was considerably weaker. The proposed structure of the duplex containing a matched (Py)U/A base pair suggests that the high polarity near the pyrenecarboxamide group is responsible for the strong A-selective fluorescence emission. Moreover, the fluorescence of the duplex containing a (Py)U/A base pair was not quenched by a flanking C/G base pair. The fluorescence properties are quite different from previous BDF nucleobases, where fluorescence is quenchable by flanking C/G base pairs. The duplex containing the C derivative, (Py)C, selectively emitted fluorescence when the base opposite (Py)C was G. The drastic change of fluorescence intensity by the nature of the complementary base is extremely useful for SNP typing. (Py)U- and (Py)C-containing oligodeoxynucleotides acted as effective reporter probes for homogeneous SNP typing of DNA samples containing c-Ha-ras and BRCA2 SNP sites.  相似文献   

15.
Novel selective non-hydrogen-bonding DNA base pairs utilizing fluorinated nucleoside analogues have been investigated. Melting studies of DNA duplexes containing 2,3,4,5-tetrafluorobenzene and 4,5,6,7-tetrafluoroindole bases on opposite strands show greater stabilization of the duplex compared with nonfluorinated hydrocarbon controls. Overall, these hydrophobic analogues are destabilizing compared with natural base pairs but are stabilizing compared with natural base mismatches. Such selective pairing may be due to solvent avoidance of these hydrophobic structures, burying their surfaces within the duplex. Our findings suggest that polyfluoroaromatic bases might be employed as a new, selective base-pairing system orthogonal to the natural genetic system.  相似文献   

16.
We prepared and investigated oligonucleotide duplexes of the sequence d(GATGAC(X)nGCTAG).d(CTAGC(Y)nGTCATC), in which X and Y designate biphenyl- (bph) and pentafluorobiphenyl- ((5F)bph) C-nucleotides, respectively, and n varies from 0-4. These hydrophobic base substitutes are expected to adopt a zipperlike, interstrand stacking motif, in which not only bph/bph or (5F)bph/(5F)bph homo pairs, but also (5F)bph/bph mixed pairs can be formed. By performing UV-melting curve analysis we found that incorporation of a single (5F)bph/(5F)bph pair leads to a duplex that is essentially as stable as the unmodified duplex (n=0), and 2.4 K more stable than the duplex with the nonfluorinated bph/bph pair. The T(m) of the mixed bph/(5F)bph pair was in between the T(m) values of the respective homo pairs. Additional, unnatural aromatic pairs increased the T(m) by +3.0-4.4 K/couple, irrespective of the nature of the aromatic residue. A thermodynamic analysis using isothermal titration calorimetry (ITC) of a series of duplexes with n=3 revealed lower (less negative) duplex formation enthalpies (DeltaH) in the (5F)bph/(5F)bph case than in the bph/bph case, and confirmed the higher thermodynamic stability (DeltaG) of the fluorinated duplex, suggesting it to be of entropic origin. Our data are compatible with a model in which the stacking of (5F)bph versus bph is dominated by dehydration of the aromatic units upon duplex formation. They do not support a model in which van der Waals dispersive forces (induced dipoles) or electrostatic (quadrupole) interactions play a dominant role.  相似文献   

17.
Chemical alkylation of DNA produces potentially toxic and mutagenic damage such as O6‐alkylguanine (O6‐alkylG) adducts. Non‐natural nucleoside analogues that pair with DNA adducts provide a potential basis for studying damaged DNA. Herein, we evaluated the base pairing properties of elongated nucleoside analogues containing napthalene‐derived tricyclic nucleobases as DNA adduct‐pairing nucleoside analogues in DNA hybridization probes. DNA duplex melting studies revealed that the elongated nucleoside analogs formed more stable base pairs opposite O6‐alkylG than G and were better able to distinguish between G, O6‐alkylG, and an abasic site than any previously described nucleoside analogue. DNA duplexes containing an elongated base analogue exhibited different fluorescence intensities when paired opposite O6‐alkylG vs. G or abasic sites. Their selectivity for stabilizing alkylated DNA make the elongated hydrophobic base analogues improved candidates for incorporating into DNA hybridization probes targeting O6‐alkylG.  相似文献   

18.
Perylene-3,4:9,10-tetracarboxylic acid bisimides (PBs) were incorporated synthetically into oligonucleotides by using automated DNA building-block chemistry. The 2'-deoxyribofuranoside of the natural nucleosides was replaced by (S)-aminopropan-2,3-diol as an acyclic linker between the phosphodiester bridges that is tethered to one of the imide nitrogen atoms of the PB dye. The S configuration of this linker was chosen to mimic the stereochemical situation at the 3'-position of the natural 2'-deoxyribofuranosides. By using this strategy, up to six PB dyes were incorporated in the middle of 18-mer DNA duplexes by using interstrand alternating sequences of PBs with thymines or an abasic site analogue. Both PB dimers and PB hexamers as artificial base substitutions inside the duplexes yield characteristic excimer-type fluorescence. The stacking properties of the PB chromophores are modulated by the presence or absence of thymines opposite the PB modification site in the counterstrand. The interstrand PB dimers can be regarded as hydrophobically interacting base pairs, which display a characteristic fluorescence readout signal. Hence, for the PB hexamers, we proposed a zipperlike recognition motif that is formed inside duplex DNA. The PB zipper shows characteristic excimer-type emission as a fluorescence readout signal for the pairing interaction.  相似文献   

19.
Expansion of the genetic alphabet has been a long-time goal of chemical biology. A third DNA base pair that is stable and replicable would have a great number of practical applications and would also lay the foundation for a semisynthetic organism. We have reported that DNA base pairs formed between deoxyribonucleotides with large aromatic, predominantly hydrophobic nucleobase analogues, such as propynylisocarbostyril (dPICS), are stable and efficiently synthesized by DNA polymerases. However, once incorporated into the primer, these analogues inhibit continued primer elongation. More recently, we have found that DNA base pairs formed between nucleobase analogues that have minimal aromatic surface area in addition to little or no hydrogen-bonding potential, such as 3-fluorobenzene (d3FB), are synthesized and extended by DNA polymerases with greatly increased efficiency. Here we show that the rate of synthesis and extension of the self-pair formed between two d3FB analogues is sufficient for in vitro DNA replication. To better understand the origins of efficient replication, we examined the structure of DNA duplexes containing either the d3FB or dPICS self-pairs. We find that the large aromatic rings of dPICS pair in an intercalative manner within duplex DNA, while the d3FB nucleobases interact in an edge-on manner, much closer in structure to natural base pairs. We also synthesized duplexes containing the 5-methyl-substituted derivatives of d3FB (d5Me3FB) paired opposite d3FB or the unsubstituted analogue (dBEN). In all, the data suggest that the structure, electrostatics, and dynamics can all contribute to the extension of unnatural primer termini. The results also help explain the replication properties of many previously examined unnatural base pairs and should help design unnatural base pairs that are better replicated.  相似文献   

20.
Substitution of natural nucleobases in PNA oligomers with ligands is a strategy for directing metal ion incorporation to specific locations within a PNA duplex. In this study, we have synthesized PNA oligomers that contain up to three adjacent bipyridine ligands and examined the interaction with Ni2+ and Cu2+ of these oligomers and of duplexes formed from them. Variable-temperature UV spectroscopy showed that duplexes containing one terminal pair of bipyridine ligands are more stable upon metal binding than their nonmodified counterparts. While binding of one metal ion to duplexes that contain two adjacent bipyridine pairs makes the duplexes more stable, additional metal ions lower the duplex stability, with electrostatic repulsions being, most likely, an important contributor to the destabilization. UV titrations showed that the presence of several bipyridine ligands in close proximity of each other in PNA oligomers exerts a chelate effect. A supramolecular chelate effect occurs when several bipyridines are brought next to each other by hybridization of PNA duplexes. EPR spectroscopy studies indicate that even when two Cu2+ ions coordinate to a PNA duplex in which two bipyridine pairs are next to each other, the two metal-ligand complexes that form in the duplex are far enough from each other that the dipolar coupling is very weak. EXAFS and XANES show that the Ni2+-bipyridine bond lengths are typical for [Ni(bipy)2]2+ and [Ni(bipy)3]2+ complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号