首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The velocity field corresponding to the Rayleigh–Stokes problem for an edge, in an incompressible generalized Oldroyd-B fluid has been established by means of the double Fourier sine and Laplace transforms. The fractional calculus approach is used in the constitutive relationship of the fluid model. The obtained solution, written in terms of the generalized G-functions, is presented as a sum of the Newtonian solution and the corresponding non-Newtonian contribution. The solution for generalized Maxwell fluids, as well as those for ordinary Maxwell and Oldroyd-B fluids, performing the same motion, is obtained as a limiting case of the present solution. This solution can be also specialized to give the similar solution for generalized second grade fluids. However, for simplicity, a new and simpler exact solution is established for these fluids. For β → 1, this last solution reduces to a previous solution obtained by a different technique.   相似文献   

2.
The velocity field corresponding to the Rayleigh–Stokes problem for an edge, in an incompressible generalized Oldroyd-B fluid has been established by means of the double Fourier sine and Laplace transforms. The fractional calculus approach is used in the constitutive relationship of the fluid model. The obtained solution, written in terms of the generalized G-functions, is presented as a sum of the Newtonian solution and the corresponding non-Newtonian contribution. The solution for generalized Maxwell fluids, as well as those for ordinary Maxwell and Oldroyd-B fluids, performing the same motion, is obtained as a limiting case of the present solution. This solution can be also specialized to give the similar solution for generalized second grade fluids. However, for simplicity, a new and simpler exact solution is established for these fluids. For β → 1, this last solution reduces to a previous solution obtained by a different technique.  相似文献   

3.
4.
Dissipation, the power due to the shear stress at the wall, the change of kinetic energy with time as well as the boundary layer thickness corresponding to the Rayleigh–Stokes problem for an Oldroyd-B fluid are established. The corresponding expressions of Maxwell, second grade and Newtonian fluids, performing the same motions, are obtained as the limiting cases of our general results. Specific features of the four models are emphasized by means of the asymptotic approximations and graphical representations. It is worth mentioning that in comparison with the Newtonian model, the power of the shear stress at the wall and the dissipation for Oldroyd-B fluids increase while the boundary layer thickness decreases.  相似文献   

5.
6.
In this paper, based on the second-order compact approximation of first-order derivative, the numerical algorithm with second-order temporal accuracy and fourth-order spatial accuracy is developed to solve the Stokes’ first problem for a heated generalized second grade fluid with fractional derivative; the solvability, convergence, and stability of the numerical algorithm are analyzed in detail by algebraic theory and Fourier analysis, respectively; the numerical experiment support our theoretical analysis results.  相似文献   

7.
The objective in this paper is to discuss the existence and the uniqueness of a weighted extended BB-spline (WEB-spline) based discrete solution for the stationary incompressible Navier–Stokes equations. The WEB-spline discretization is newly developed methodology which satisfies the inf–sup condition or Ladyshenskaya–Babus?ka–Brezzi (LBB) condition. The main advantage of these new elements over standard finite elements is that they use regular grids instead of irregular partitions of the domain, thus eliminating the difficult and time-consuming pre-processing step. An error estimate for this WEB-spline based discrete solution is also obtained.  相似文献   

8.
The classical problem of thermal-convection involving the classical Navier–Stokes fluid with a constant or temperature dependent viscosity, within the context of the Oberbeck–Boussinesq approximation, is one of the most intensely studied problems in fluid mechanics. In this paper, we study thermal-convection in a fluid with a viscosity that depends on both the temperature and pressure, within the context of a generalization of the Oberbeck–Boussinesq approximation. Assuming that the viscosity is an analytic function of the temperature and pressure we study the linear as well as the non-linear stability of the problem of Rayleigh–Bénard convection. We show that the principle of exchange of stability holds and the Rayleigh numbers for the linear and non-linear stability coincide.  相似文献   

9.
The classical problem of thermal-convection involving the classical Navier–Stokes fluid with a constant or temperature dependent viscosity, within the context of the Oberbeck–Boussinesq approximation, is one of the most intensely studied problems in fluid mechanics. In this paper, we study thermal-convection in a fluid with a viscosity that depends on both the temperature and pressure, within the context of a generalization of the Oberbeck–Boussinesq approximation. Assuming that the viscosity is an analytic function of the temperature and pressure we study the linear as well as the non-linear stability of the problem of Rayleigh–Bénard convection. We show that the principle of exchange of stability holds and the Rayleigh numbers for the linear and non-linear stability coincide.  相似文献   

10.
11.
This paper analyzes a fluid—solid interaction model which describes the interaction between an inviscid fluid and an elastic solid In the model, the linear elastodynamic equations complemented with appropriate interface and boundary conditions are used to describe the wave propagation in the fluid and solid regions, and absorbing boundary conditions are used to minimize unphysical wave reflections. It is shown that the initial boundary value problem of the mathematical model posses a unique global (in time) quasi-strong solution. Regularity of the quasi-strong solution is also obtained under some reasonable assumptions on the data and on the domain.  相似文献   

12.
A Laguerre–Galerkin method is proposed and analyzed for Quasilinear parabolic differential equation which arises from Stokes’ first problem for a third-grade fluid on a semi-infinite interval. By reformulating this equation with suitable functional transforms, it is shown that the Laguerre–Galerkin approximations are convergent on a semi-infinite interval with spectral accuracy. An efficient and accurate algorithm based on the Laguerre–Galerkin approximations to the transformed equations is developed and implemented. Effects of non-Newtonian parameters on the flow phenomena are analyzed and documented.  相似文献   

13.
This paper analyzes the surface/subsurface flow coupled with transport. The flow is modeled by the coupling of Navier–Stokes and Darcy equations. The transport of a species is modeled by a convection-dominated parabolic equation. The two-way coupling between flow and transport is nonlinear and it is done via the velocity field and the viscosity. This problem arises from a variety of natural phenomena such as the contamination of the groundwater through rivers. The main result is existence and stability bounds of a weak solution.  相似文献   

14.
The paper studies a boundary-value problem (with the usual adherence boundary condition) for a stationary system of equations of motion of second-grade fluids in a bounded domain. This system is not elliptic and contains third-order derivatives of the velocity vector field. This leads to obvious difficulties in the analysis of the problem. It is known that the problem is reduced to the usual Stokes problem and to the transport equations or their analogs. We present a new easier method of such a reduction which allows us to prove the solvability of a stationary boundary-value problem for the equations of motion of second-grade fluids in the Hölder classes of functions in the case of small exterior forces. Bibliography: 6 titles.  相似文献   

15.
We study existence of global in time solutions to the Navier–Stokes equations in a two dimensional domain with an unbounded boundary. The problem is considered with slip boundary conditions involving nonzero friction. The main result shows a new L-bound on the vorticity. A key element of the proof is the maximum principle for a reformulation of the problem. Under some restrictions on the curvature of the boundary and the friction the result for large data (including flux) with the infinite Dirichlet integral is obtained.Received: October 31, 2002; revised: September 17, 2003  相似文献   

16.
17.
We study existence of global in time solutions to the Navier–Stokes equations in a two dimensional domain with an unbounded boundary. The problem is considered with slip boundary conditions involving nonzero friction. The main result shows a new L-bound on the vorticity. A key element of the proof is the maximum principle for a reformulation of the problem. Under some restrictions on the curvature of the boundary and the friction the result for large data (including flux) with the infinite Dirichlet integral is obtained.  相似文献   

18.
In this work we consider the generalized Navier–Stokes equations with the presence of a damping term in the momentum equation. The problem studied here derives from the set of equations which govern isothermal flows of incompressible and homogeneous non-Newtonian fluids. For the generalized Navier–Stokes problem with damping, we prove the existence of weak solutions by using regularization techniques, the theory of monotone operators and compactness arguments together with the local decomposition of the pressure and the Lipschitz-truncation method. The existence result proved here holds for any ${q > \frac{2N}{N+2}}$ and any σ > 1, where q is the exponent of the diffusion term and σ is the exponent which characterizes the damping term.  相似文献   

19.
20.
Summary. A finite element formulation is developed for the two dimensional nonlinear time dependent compressible Navier–Stokes equations on a bounded domain. The existence and uniqueness of the solution to the numerical formulation is proved. An error estimate for the numerical solution is obtained. Received September 9, 1997 / Revised version received August 12, 1999 / Published online July 12, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号