首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A new ligand, N-phenyl-N -2-furanthiocarbohydrazide (HPhfth), and its complexes with VOIV, MnIII, FeIII, CoII, NiII, CuII and ZnII have been prepared and characterized by elemental analyses, magnetic susceptibility measurements, i.r., n.m.r., u.v.–vis., mass and FAB mass spectral data. The room temperature e.s.r. spectra of the VOIV, FeIII and CuII complexes yield <g> values characteristic of square pyramidal VOIV, octahedral FeIII and square planar CuII, respectively. The NiII and CuII complexes semiconduct, but the ZnII complex is an insulator at room temperature. However, the conductivity increases as the temperature increases from 303–383 K, with a band gap of 0.21–1.01 eV. HPhfth and its soluble complexes have been screened against several bacteria and fungi.  相似文献   

2.
Summary New potential tetradentate ligands, N-benzoyl-N-thiobenzohydrazide (H2BTBH) and N-salicyl-N-thiobenzohydrazide (H2SBTH) have been prepared and characterized. Their complexes with CoII, NiII and ZnII have been prepared and characterized on the basis of elemental analyses, magnetic susceptibility measurements, and u.v.-vis., i.r. and 1H-n.m.r. spectral studies. The bonding and stereochemistries of the complexes are discussed. H2BTBH, H2SBTH and the complexes have been screened towards a number of bacteria.  相似文献   

3.
New mixed-ligand complexes, [M2(BAMP)(bipy)2][MCl4]2, M=Co+2(1), Cu+2(2), [M2(TAMEN)(bipy)2][MCl4]2, M=Fe+2(3), Co2+(4), and [Fe2(TAMEN)(bipy)2][FeCl6]2 (5), where BAMP and TAMEN stand for the Mannich bases N,N′-bis(antipyryl-4-methylene)-piperazine and N,N′-tetra(antipyryl-4-methylene)-1,2-ethane-diamine, respectively, have been obtained and characterized by elemental analyses, conductometric and magnetic susceptibility measurements at room temperature, mass spectrometry, UV-Vis, infrared, and mass spectroscopy, and 1H NMR spectra for the ligands.  相似文献   

4.
5.
Complexes of the general formula, ML2 [M = CuII, NiII, CoII and OVIV; L = 1,2,3,5,6,7,8,8a-octahydro-3-hydroxyimino-N-(4-X-phenyl)-l-phenyl-5-(phenylmethylene)-2-naphthalenecarboxamide (X = H, Me, OMe, Cl)] have been prepared and characterized on the basis of elemental analysis, magnetic moments and i.r., e.p.r. and electronic spectra. These metal complexes contain the N4 chromophore with the ligand coordinating through nitrogens of the azomethine and deprotonated anilide functions. C.v. measurements indicate that the copper(II) complexes are quasi-reversible in acetonitrile solution. Square planar and square pyramidal structures are assigned respectively to the copper(II) and oxovanadium(IV) complexes, whereas tetrahedral geometry is assigned to the nickel(II) and cobalt(II) complexes. Deprotonated anilide nitrogen is involved in coordination and the presence of an electron-donating group para to the anilide function decreases the ΔE values of the d–d transitions while the value is found to increase when electron-withdrawing groups are substituted. Line spacing in the e.p.r. spectra of the copper(II) and oxovanadium(IV) complexes increases when methyl group is para to the anilide group, and decreases when this group is replaced by methoxy or chloro. The ν(C–N) of the anilide group and the ν(C-N) of the azomethine function of the oxime metal complexes are metal-sensitive and the blue shift for the above stretching frequencies follows the order: copper(II) > oxovanadium(IV) > nickel(II) ≈ cobalt(II). This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
Abstract

Urease catalyzes the decomposition of urea into ammonia, which has harmful effects on both human health and fertile soil. Aiming at exploring novel urease inhibitors, a series of hydrazone compounds and their CoIII, CuII, NiII, and ZnII complexes were prepared from 4-methoxy-N'-(pyridin-2-ylmethylene)benzohydrazide (HL). They are [CoClL(NCS)] (1), [CoL2]·Cl·CH3OH·H2O (2), [CuL(NCNCN)]n·nCH3OH (3), [NiL(HL)]·ClO4·CH3OH (4) and [ZnClL(OH2)]·CH3OH (5). The compounds were characterized by physico-chemical methods. Structures of the complexes were further confirmed by single crystal X-ray diffraction. The metal ions in 1, 3, and 5 display square pyramidal coordination and 2 and 4 display octahedral coordination. The inhibitory effects of the compounds on Jack bean urease were evaluated. The results showed that 3 has effective urease inhibitory activity, with IC50 value of (7.3?±?1.0) μmol L?1.  相似文献   

7.
A project related to the crystal engineering of hydrogen-bonded coordination complexes has been initiatied and some of our first results are presented here. The compounds [Mn(DMU)6](ClO4)2 (1), [Ni(DMU)6](ClO4)2 (2), [Cu(OClO3)2(DMU)4] (3) and [Zn(DMU)6](ClO4)2 (4) have all been prepared from the reaction of N,N-dimethylurea (DMU) and the appropriate hydrated metal perchlorate salt. Crystal structure determinations of the four compounds demonstrate the existence of [M(DMU)6]2+ cations and ClO4 counterions in (1), (2) and (4), whereas in (3) monodentate coordination of the perchlorate groups leads to molecules. The [M(DMU)6]2+ cations and ClO4 anions self-assemble to form a hydrogen-bonded one-dimensional (1D) architecture in (1) and different 2D hydrogen-bonded networks in (2) and (4). The hydrogen bonding functionalities on the molecules of (3) create a 2D structure. The complexes were also characterised by room-temperature effective magnetic moments and i.r. studies. The data are discussed in terms of the nature of bonding and the known structures.  相似文献   

8.
Summary The reactions of manganese(II), cobalt(II) and nickel(II) acetates (1 mole) with antipyrine-4-azo--ethylcyanoacetate (HL1) and antipyrine-4-azo--acetylacetone (HL2) (1 mole) produce complexes of the M(L)2 type. K2PdCl4 (1 mole) reacts with HL1 and HL2 (1 mole) to yield complexes of the general formula PdLCl, the ligands behaving as monobasic tridentates. The electronic spectral and magnetic data show the complexes to be high-spin octahedral, whereas the palladium(II) complexes are diamagnetic square planar. The complexes were characterized by elemental analyses, conductance measurements and i.r. and electronic spectra as well as magnetic susceptibility measurements and thermal (t.g.a. and d.t.a.) analysis.Nuclear Material Authority.  相似文献   

9.
The possibility of ?-caprolactam (CPL) to coordinate to manganese(II), cobalt(II), and nickel(II) rhodanides has been investigated. New complexes trans-[M(CPL)4(NCS)2], where M = Mn (I), Co (II), and Ni (III), have been synthesized. The complexes have been studied by chemical analysis and IR spectroscopy. According to X-ray diffraction, complexes are isostructural to each other and crystallize in monoclinic space group P21/c, Z = 2. For I: a = 6.9457(2) ?, b = 17.7751(6) 0A, c = 12.8999(4) 0A, ?? = 104.2670(10)°, V = 1543.51(8) ?3, ??calc = 1.342 g/cm3, R 1 = 0.0426. For II: a = 6.8925(2) ?, b = 17.8189(8) ?, c = 12.7278(6) ?, ?? = 104.421(2)°, V = 1513.93(11) ?3, ??calc = 1.377 g/cm3, R 1 = 0.0280. For III: a = 6.7804(2) ?, b = 18.4631(4) ?, c = 12.4841(3) ?, ?? = 105.2950(10)°, V = 1507.49(7) ?3, ??calc = 1.382 g/cm3, R 1 = 0.0273. Structures I?CIII are molecular; the metal atom in each of them coordinates four CPL molecules and two NCS groups via oxygen and nitrogen atoms, respectively.  相似文献   

10.
The tripodal tetraamine ligand N{(CH2)3NH2}{(CH2)2NH2}2 (pee), has been investigated as an asymmetrical tetraamine chelating agent for CoII, NiII, CuII, ZnII and CdII. The protonation constants for this ligand and the formation constants for its complexes have been determined potentiometrically in 0.1 M KCl at 25 °C. The successive protonation constants (log K n ) are: 10.22, 9.51, 8.78 and 1.60 (n = 1–4). One complex with formula M(pee)2+ (M = Co, Ni, Cu, Zn and Cd) is common to all five metal ions and the formation constant (log ML) is: 12.15, 14.17, 16.55, 13.35 or 9.74, respectively. In addition to the simple complexes, CoII, CuII and ZnII also give hydroxo complexes, and CuII and NiII give complexes with monoprotonated pee. [Zn(pee)](ClO4)2 and [Cd(pee)Cl](ClO4) complexes were isolated and are believed to have tetrahedral and trigonal-bipyramidal structures, respectively.  相似文献   

11.
Complexation of the zinc(II) ion with 2,2-bipyridine (bpy) and 1,10-phenanthroline (phen) has been calorimetrically studied in 4-methylpyridine (4Me-py) containing 0.1 mol dm–3 (n-C4H9)4NClO4 as a constant ionic medium at 25°C. The formation of [ZnL]2+, [ZnL2]2+, and [ZnL3]2+ (L=bpy, phen), and their formation constants, reaction enthalpies and entropies were determined. Our EXAFS (extended X-ray absorption fine structure) measurements showed that the solvation structure of the manganese(II), cobalt(II), and nickel(II) ions is six-coordinate octahedral in 4Me-py and 3-methylpyridine (3Me-py), while that of the zinc(II) ion is four-coordinate tetrahedral in 4Me-py. Since [ZnL3]2+ is expected to have an octahedral structure, a tetrahedral-to-octahedral structural change should take place at a certain step of complexation. The thermodynamic parameters, especially reaction entropies, indicate that the structural change occurs at the formation of [Zn(bpy)2]2+ and [Zn(phen)]2+.  相似文献   

12.
Decamethyl-3,3′-bis(dipyrrolylmethene) dihydrobromide H2L · 2HBr (H2L is bis(3,4,7,8,9-pentamethylpyrrol-3-yl)methane), which is the simplest representative of a novel class of oligo(dipyrrolylmethenes) belonging to chromophore chelating nonmacrocyclic ligands, were examined by 1H NMR, IR, and electronic absorption spectroscopy. Complexation reactions of H2L · 2HBr with M(AcO)2 (M = Zn(II), Cu(II), and Co(II)) in DMF at 298.15 K were monitored by electronic absorption spectroscopy and studied by the molar ratio method. The thermodynamic constants K 0 of these reactions were estimated. The d metal ions coordinate H2L to give the binuclear homoleptic complexes [M2L2]. The reactions proceed through the intermediate binuclear heteroleptic complex [M2L(AcO)2] detected by spectroscopic methods. The thermodynamic stabilities of [M2L2] and [M2L(AcO)2] increase when moving from Cu(II) to Zn(II) and Co(II). The probability of formation and stability of [M2L2] containing 3,3′-bis(dipyrrolylmethene) are substantially higher than those of analogous complexes with the 2,2′-isomer (decamethyl-2,2′-biladienea, c). The low K 0 values for the complexation between H2L and Cu(AcO)2 are due to slow oxidation of the biladiene ligand into a bilatriene with participation of Cu2+ ions.  相似文献   

13.
The complexes of N,N′-didodecildithiooxamide (L): CoL3(ClO4)3, NiL2X2 (X = Cl, Br, I, ClO4, HSO4), CuL2X2 (X = ClO4, HSO4) and CuLX2 (X = Cl, Br) were prepared. The cobalt and nickel complexes are diamagnetic, with octahedral and planar coordination respectively. The copper complexes are paramagnetic with normal magnetic moments corresponding to a tetragonal coordination. The i.r. and far i.r. spectra are discussed.  相似文献   

14.
Novel complexes of 2,2′-iminodiethanoldithiocarbamate (DEADTC) with Te(IV), Te(II) and Se(II) having the composition Te(DEADTC)4, Te(DEADTC)2I2, Te(DEADTC)3I, Te(DEADTC)2 and Se(DEADTC)2 were isolated and characterised by X-ray, magnetic, spectral (UV, IR) and conductance and molecular weight measurements. 2,2′-Iminodiethanoldithiocarbamate is shown to be weaker in its ligation behaviour than diethyldithiocarbamate.  相似文献   

15.
4,4-Bis(chloroacetyl)diphenylmethane has been prepared from ClCH2COCl and Ph2CH2. 4,4-Methylenebis(phenylglyoxylohydroximoyl chloride has also been obtained. Four new substituted 4,4-bis(alkylaminoisonitrosoacetyl)diphenylmethanes (ligands) have been prepared from 4,4-methylenebis(phenylglyoxylohydroximoyl chloride) and the corresponding amines. The NiII, CuII and CoII complexes of these ligands were prepared and their structures were identified using AAS, i.r., 1H-n.m.r. spectral data, elemental analyses and magnetic susceptibility measurements.  相似文献   

16.
2,4-Bipyridyl (2,4-bipy orL) complexes with cobalt(II), nickel(II) and copper(II) of the formulae M(2,4-bipy)2(CH3COO)2·2H2O (M(II) = Co, Ni, Cu), Co(2,4-bipy)2SO4·3H2O or Ni(2,4-bipy)2SO4·4H2O have been prepared and their IR and electronic (VIS) spectra are discussed. The thermal behaviour of the obtained compounds has also been studied. The intermediate products of decomposition at different temperatures have been characterized by chemical analysis and X-ray diffraction.We thank dr. A. Malinowska for performing VIS spectra. This work was supported by the KBN project No. PB 0636/P3/93/04.  相似文献   

17.
Summary Complexes of empirical formulae [ML2Cl2(OH2)2], [CoL2Br2(OH2)2]L·4H2O, [NiL2Br2(OH2)2]L2·2H2O, [ML2(OH2)4]L2(NO3)2 and [ML4(OH2)2](ClO4)2·2H2O (M = CoII, NiII, L = 2,4-bipyridyl) were synthesized and characterized by elemental and spectral analyses. The thermal decomposition of the complexes was also investigated.Author to whom all correspondence should be directed.  相似文献   

18.
《Polyhedron》1999,18(21):2787-2793
New binuclear complexes of the type [(Ni(Medpt)NO3)2ox] (1) (Medpt=3,3′-diamino-N-methyl-dipropylamine, H2ox=oxalic acid), [(Ni(dach)2)2ox]NO3·2H2O (2) (dach=trans-1,2-diaminocyclohexane), [(Cu(Medpt))2ox]X2·yH2O (X=NO3, y=2 2/3 (3); X=ClO4, y=0 (4)) and [(Zn(dach)2)2ox](ClO4)2·2H2O (5) have been prepared and characterized by IR and UV–Vis spectroscopies. Spectroscopic data are consistent with oxalate-bridged structures between six-coordinated (N3O3 or N4O2) Ni(II) (compounds 1 or 2), five-coordinated (N3O2) Cu(II) (compounds 3 and 4) or six-coordinated (N4O2) Zn(II) (compound 5). The crystal structure of [(Cu(Medpt))2ox](NO3)2·2 2/3 H2O (3) has been determined by single-crystal X-ray analysis. The structure of (3) consists of centrosymmetric binuclear cations [(Medpt)Cu(ox)Cu(Medpt)]2+, nitrate anions and water molecules of crystallization. The copper atom is five-coordinated by two oxalate–oxygen and three Medpt–nitrogen atoms, in a hybrid arrangement between trigonal–bipyramidal and square–pyramidal. The temperature dependence of magnetic susceptibility (1.8–300 K) was measured for compounds 14. Magnetochemical measurements show that Ni(II) complexes are antiferromagnetically coupled, J=−29.4 (1) and −32.7 cm−1 (2) (H=−JS1S2) while the Cu(II) complexes present a very weak coupling, J=−2.6 (3) and +1.9 cm−1 (4), being antiferro- and ferromagnetic in nature.  相似文献   

19.
The formation of bimetallic Pd(II) and M = Fe(III), Ti(IV), V(V), Co(II), or Cu(II) complexes with the two-vacancy [As2W19O67(H2O)]14? heteropolyanion (HPA) (below referred to as As2W19) has been studied by UV/Vis and IR spectroscopy and differential dissolution. In an aqueous solution at pH 6 and a Pd: M: As2W19 molar ratio of 1: 1: 1, heteropoly complexes (HPC) incorporating two different metals one being Pd(II) are formed. The resulting complexes were precipitated from solution as cesium salts. In the case of Pd(II) and M = Fe(III), Co(II), or Cu(II) ions, the precipitate contained bimetallic HPC [As2W19FePDO67(H2O)2]9? (65.9 wt %), [As2W19CoPdO67(H2O)2]10? (45.6 wt %), and [As2W19CuPdO67(H2O)2]10? (50.7 wt %) mixed with monometallic HPC [As2W19M2O67(H2O)2](14 ? 2m)? (As2W19M2). In the case of Pd(II) and Ti(IV) or V(V), bimetallic HPC of a different composition were precipitated, namely, [As2W19Ti2O67(OH x )2 PdO](10 ? 2x)? (76.8 wt %) and [As2W19V2O67(OH x )2 PdO](8 ? 2x)? (15.0 wt %), where palladium ions are not incorporated in the HPC structure but are attached to the HPC surface, possibly, as hydroxide species. Using M = Pd(II), Ti(IV), V(V) ions and the HPA As2W19 ([M]: [As2W19] = 2 : 1, pH 6), new monometallic HPC, [As2W19Pd2O67(H2O)2]10?, [As2W19Ti2O67(OH x )2](10 ? 2x)?, and [As2W19V2O67(OH x )2](8 ? 2x)? (x = 0, 1, or 2), were obtained.  相似文献   

20.
Sun  Hongwei  Lin  Huakuan  Zhu  Shourong  Zhao  Guanghua  Su  Xuncheng  Chen  Yunti 《Transition Metal Chemistry》1999,24(3):362-365
Two hexadentate compounds incorporating 1,10-phenanthroline and four alkylamino donors have been prepared. The protonation constants and the formation constants of dipositive ion (Mn2+, Co2+, Cu2+ and Zn2+) complexes have been determined in aqueous solution by pH titration at 25 ± 0.1 °C and I = 0.1 mol·dm–3 NaNO3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号