首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
唐泽眉  胡文瑞 《力学学报》1991,23(6):658-665
本文研究从上面加热的液桥中不同 pr 数流体的热表面张力驱动对流。在 Ma 数相同的条件下,不同 pr 数流体液桥中的温度分布和流场结构定性相似,但定量结果不同。小pr数(pr<<1)流体液桥中的粘性边界层远小于热边界层,最大流函数所在位置向冷端偏移,有较大的流动速度。结果表明,Ma 数是描述这种流动的敏感参数。  相似文献   

2.
In order to understand the effect of the vertical heat transfer on thermocapillary convection characteristics in a differentially heated open shallow rectangular cavity, a series of two- and three-dimensional numerical simulations were carried out by means of the finite volume method. The cavity was filled with the 1cSt silicone oil (Prandtl number Pr = 13.9) and the aspect ratio ranged from 12 to 30. Results show that thermocapillary convection is stable at a small Marangoni number. With the increase of the heat flux on the bottom surface, thermocapillary convection transits to the asymmetrical bi-cellular pattern with the opposite rotation direction. The roll near the hot wall shrinks as the Marangoni number increases. At a large Marangoni number, numerical simulations predict two types of the oscillatory thermocapillary flow. One is the hydrothermal wave, which is dominant only in a thin cavity. The other appears in a deeper cavity and is characterized by oscillating multi-cellular flow. The critical Marangoni number for the onset of the oscillatory flow increases first and then decreases with the increase of the vertical heat flux. The three-dimensional numerical simulation can predict the propagating direction of the hydrothermal wave. The velocity and temperature fields obtained by three-dimensional simulation in the meridian plane are very close to those obtained by two-dimensional simulation.  相似文献   

3.
周游  曾忠  刘浩  张良奇 《力学学报》2022,54(2):301-315
采用基于谱元法线性稳定性分析方法,研究了高径比对GaAs熔体(Pr=0.068)液桥热毛细对流失稳的影响,同时结合能量分析揭示了热毛细对流的失稳机制.研究结果表明:与典型低普朗特数(例如Pr=0.011)熔体静态失稳模式和典型高普朗特数(例如Pr>1)熔体振荡失稳模式不同,GaAs熔体热毛细对流失稳模式依赖于液桥高径比...  相似文献   

4.
In the present paper, the experimental studies on thermocapillary convection are reviewed. The author‘s interest is mainly focused on the onset of oscillatory thermocapillary convection,the features of oscillatory flow pattern, and the critical Marangoni number related with temperature and free surface oscillation. The coordinated measurement in a microgravity environment of a drops haft is also addressed.  相似文献   

5.
Marangoni convection, whether thermal or solutal, is known to have a profound impact on many technological processes involving gas inclusions in a liquid phase. Evidently, similar phenomena may arise both in thermocapillary and solutocapillary situations, due to similarity of the motion driving mechanisms. However, the fact that the characteristic times of heat and surfactant diffusion generally differ by several orders of magnitude lends singularity to the behavior of Marangoni convection in inhomogeneous mixtures. Moreover, in the solutocapillary case one can meet the action of some additional effects associated with dissolution of the surfactant in a liquid, its adsorption at the interface and evaporation into a gas phase. This paper presents a comparative analysis of the results of ground experiments studying the behavior of air bubbles in a liquid under the action of thermocapillary and solutocapillary forces. The use of original experimental techniques makes it possible to eliminate the influence of gravity effects. A new Marangoni phenomenon—solutocapillary bubble migration—was detected and investigated. The results of studying thermal and concentration convective flows and bubble motion, in relation to bubble size, time, liquid layer thickness and fluids properties, are presented and discussed.  相似文献   

6.
王胜  胡开鑫 《力学学报》2022,54(12):3398-3407
热毛细对流是流体界面温度分布不均导致的表面张力梯度驱动的流动.它主要存在于空间等微重力环境或小尺度流动等表面张力占主导的情况中.在很多工业领域,如晶体生长、聚合物加工、喷墨打印、微流控,产品质量都与热毛细对流密切相关.空间3D打印是太空制造的重要技术,可以支持空间站的在轨长期有人照料的运行和维护,实现按需制造.本文以聚合物流体的空间3D打印为应用背景,采用线性稳定性理论研究了Bingham流体双自由面热毛细液层的稳定性,得到了在不同Bingham数(B)下的临界Marangoni数(Mac)与Prandtl数(Pr)的函数关系,分析了临界模态的流场和能量机制.研究发现:该流动的临界模态包括流向波和斜波模态,与B, Bi和两界面垂直方向上的温差(Q)相关. B和Bi的增加会增强热毛细对流的稳定性.当Q=0时,扰动温度分布分成对称和反对称两种情况.当Q> 0时, Pr的增加会减弱流动稳定性.在小Pr情况下,扰动温度分布在整个流场,在大Pr情况下,扰动温度在栓塞区为零.能量分析表明:扰动动能的主要能量来源是表面张力做功,但小Pr数下基本流也有一定贡献.  相似文献   

7.
If the free liquid-gas interface of a liquid in an annular container is subjected to a temperature gradient the temperature dependent shear stress on the free liquid surface creates by viscous traction a thermocapillary convection in the bulk of the liquid. For constant temperature T 1 of the inner and T 2 of the outer wall a steady Marangoni convection takes place, while for time-oscillatory temperatures of the walls a time-dependent thermocapillary convection appears, which will create on the free liquid surface wave patterns. They shall, depending on the forcing frequency of the temperature, exhibit resonance peaks. The velocity distribution and the response magnitude inside the container has been determined. Received on 11 July 1997  相似文献   

8.
近二十年来,微重力流体开展了半浮区液桥热毛细对流的不稳定性与转捩的研究.文中给出了热毛细振荡对流发生的临界参数,分析了液桥几何位形(尺度比,体积比)、物理参数及传热参数对临界Maxangoni的影响.报导了有关的地面模拟实验,微重力实验以及本问题的线性稳定性分析、能量分析和数值模拟结果,并介绍了定常轴对称热毛细对流通过非定常振荡热毛细对流到湍流的转捩过程和三种热毛细振荡对流的产生机理.  相似文献   

9.
通过数值模拟的方法对磁场作用下的双扩散液层热毛细对流进行了研究, 模型中同时考虑了热毛细效应和溶质毛细效应的存在. 研究结果显示, 外部磁场能够有效削弱液层内热毛细对流的强度, 改变热毛细对流的对流结构; 随着磁场强度的增大, 液层内热毛细对流的对流强度逐渐减小, 热质传递过程中扩散效应逐渐得到增强; 最终, 溶质浓度沿水平方向呈梯度分布. 因此, 当磁场强度足够大时能够实现晶体生长中所需的纯扩散条件.  相似文献   

10.
In a slowly rotating annular cylindrical container the free liquid surface (liquid-gas interface) is subjected to a temperature gradient in radial direction. The temperature dependent surface tension creates a shear stress on the interface which is transmitting a thermocapillary convection in the bulk of the liquid. For constant temperature T 1 of the inner and T 2 of the outer wall a steady Marangoni convection takes place, exhibiting a double vortex ring of equal directional flow. For time-oscillatory temperatures of the walls a time-dependent thermocapillary convection appears, which will create on the free liquid surface various wave patterns. They shall, depending on the forcing frequency of the temperature, exhibit resonance peaks. The velocity distribution and the response magnitude inside the container has been determined. Received on 3 September 1997  相似文献   

11.
唐泽眉  胡文瑞 《力学进展》1999,29(4):461-470
近二十年来,微重力流体开展了半浮区液桥热毛细对流的不稳定性与转捩的研究.文中给出了热毛细振荡对流发生的临界参数,分析了液桥几何位形(尺度比,体积比)、物理参数及传热参数对临界Maxangoni的影响.报导了有关的地面模拟实验,微重力实验以及本问题的线性稳定性分析、能量分析和数值模拟结果,并介绍了定常轴对称热毛细对流通过非定常振荡热毛细对流到湍流的转捩过程和三种热毛细振荡对流的产生机理.   相似文献   

12.
A numerical method for direct simulation of thermal Marangoni effects at dynamically deformable interface of two-phase incompressible fluids is developed. The approach is based on the Volume of Fluid (VOF) method with special focus on the numerical treatment of the temperature surface gradient because of its decisive role as the driving force of the flow. The surface gradient calculation is split into computing its length and direction in order to satisfy the correct thermal boundary condition at the interface without losing mobility of the interface. The method is applied to three different types of thermocapillary flow, namely thermocapillary migration of a droplet in an ambient fluid with linear temperature gradient, thermocapillary convection in a liquid layer under linear temperature gradient along the interface, and Marangoni convection due to Bénard–Marangoni instability. In the first case, different aspects of the dynamics of the migration are considered for validation such as the terminal migration velocity, the initial acceleration and quantification of the wall effects. The simulation also considers high convective heat transfer and covers a wide range of Marangoni numbers up to 5000, where good agreement with both theoretical and experimental results is achieved. In the second case, the convection velocity in the liquid layer is compared with an analytical result. In the final application, pattern formation due to the Bénard–Marangoni instability in a liquid layer in square geometry of small aspect ratio is investigated for realistic Biot number and dynamically deformable fluid interface. The results show good agreement with experiments from literature, where our numerical simulation also predicts cell pattern for a particular aspect ratio which is outside the limitation of the above cited experimental work.  相似文献   

13.
The buoyant Marangoni convection heat transfer in a differentially heated cavity is numerically studied. The cavity is filled with water-Ag, water-Cu, water-Al2O3, and water-TiO2 nanofluids. The governing equations are based on the equations involving the stream function, vorticity, and temperature. The dimensionless forms of the governing equations are solved by the finite difference (FD) scheme consisting of the alternating direction implicit (ADI) method and the tri-diagonal matrix algorithm (TDMA). It is found that the increase in the nanoparticle concentration leads to the decrease in the flow rates in the secondary cells when the convective thermocapillary and the buoyancy force have similar strength. A critical Marangoni number exists, below which increasing the Marangoni number decreases the average Nusselt number, and above which increasing the Marangoni number increases the average Nusselt number. The nanoparticles play a crucial role in the critical Marangoni number.  相似文献   

14.
高鹏  尹兆华  胡文瑞 《力学进展》2008,38(3):329-338
液滴或气泡的迁移现象无论是在流体力学的基础研究中,还是在材料加工,化学工程等实际应用中都是一个很重要的课题。在微重力环境中,如果在液滴或气泡所在的母液中外加一个温度场,则液滴或气泡就会由于表面张力分布的不均匀而发生迁移运动。这种运动被称为Marangoni迁移或热毛细迁移运动。本文综述了液滴或气泡的热毛细迁移问题历史研究中理论分析,数值模拟以及实验方面的主要结果,阐述了该问题的研究发展过程。目前液滴迁移问题的研究状况,理论分析解还只限于线性及弱非线性的定常问题,数值模拟工作已经得到了在热对流作用比较小的时候液滴的非定常迁移过程,但是对于热对流影响很大的情况(Marangoni数大于100)则尚未得到过与实验中观测到的相一致的理论结果。本文在总结前人研究的基础上,同时给出了在对于热对流作用较大时液滴热毛细迁移非定常问题的最新的数值模拟的结果,并对该问题在此情况下产生的新的变化也给予了分析。最后,文中分析了当前研究中所存在的问题并进一步展望了液滴热毛细迁移问题在未来的发展方向。   相似文献   

15.
Recent studies have shown that the evaporation of water can induce surface tension gradients along the water surface that ultimately lead to a surface driven flow, known as Marangoni convection. To visualize and characterize the Marangoni convection in water, this study generated evaporation driven convection in pure water with a vacuum pump to control and increase the evaporation rate of water within a rectangular cuvette that was placed within a vacuum chamber, and investigated the velocity and temperature distributions of the generated convection. The investigation was performed as the vacuum chamber pressure ranged from ∼250 Pa to ∼820 Pa. The temperature field obtained from thermocouple measurements and temperature planar laser induced fluorescence (temp-PLIF) measurements indicated that no buoyancy driven motion was generated during the investigation. Velocity vector fields captured with stereo particle image velocimetry (stereo-PIV) demonstrated a convection pattern that was strong and symmetric with the centerline of the cuvette. The strength of the convection was found to be correlated with the mean evaporation rate of water. The estimated Marangoni number exceeded the critical value typically used to characterize the onset of Marangoni convection. The convection had a similar pattern as Marangoni convection observed in volatile liquids evaporated from capillary tubes. In both cases, the convection scaled with the width of the liquid container even though the sizes of the containers differ by an order of magnitude. In addition, the size of the convection in this study was much larger than the Marangoni convection in water that was observed in previous studies.  相似文献   

16.
The onset of the Benard–Marangoni convection in a horizontal porous layer permeated by a magnetohydrodynamic fluid with a nonlinear magnetic permeability is examined. The porous layer is assumed to be governed by the Brinkman model; it is bounded by a rigid surface from below and by a non-deformable free surface from above and subjected to a non-vertical magnetic field. The critical effective Marangoni number and the critical Rayleigh number are obtained for different values of the effective Darcy number, Biot number, Chandrasekhar number, nonlinear magnetic parameter, and angle from the vertical axis for the cases of stationary convection and overstability. The related eigenvalue problem is solved by using the first-order Chebyshev polynomial method.  相似文献   

17.
Finite-amplitude convective motions that arise in a two-layer system under the influence of the thermocapillary mechanism are studied. Numerical calculations have been made by the grid method for different relationships between the parameters of the fluids. A new type of instability of equilibrium is found — thermocapillary oscillations. The evolution of the oscillatory motions as the Marangoni number changes is studied. The following forms of transitions between convection regimes are established: transition from oscillatory to steady motion through an unbounded increase in the period; bifurcation of the period, accompanied by rearrangement of the three-dimensional structure of the flow. It is shown that the thermogravitational instability mechanism leads to suppression of the oscillations.  相似文献   

18.
采用界面跟踪法FTM(Front-Tracking Method),并结合CSF(continuum surface force)模型,研究了在垂直方向上温度分布不均匀的对称流场中由Marangoni效应引起的气泡上升运动问题。模拟了在不同的M a数和Pr数下单气泡及同轴双气泡的运动。研究结果表明,在不同的M a数下气泡的运动差异较大,M a数越大,气泡运动至稳态时的速度越大,且气泡运动的最大速度值与M a数呈正相关关系;增大Pr数所造成的粘度增大或热扩散率减小将削弱气泡的迁移运动;Marangoni对流中双气泡的局部运动证实了温度梯度和气泡运动速度紧密相关。  相似文献   

19.
 At liquid–gas or liquid–liquid interfaces thermocapillary or Marangoni convection develops in the presence of a temperature or concentration gradient along the interface. This convection was not paid much attention up to now, because under terrestrial conditions it is superimposed by the strong buoyancy convection. In a microgravity environment, however, it is the remaining mode of natural convection. During boiling in microgravity it was observed at subcooled conditions. Therefore the question arises about its contribution to the heat transfer. Thus the thermocapillary convection was intensively studied at single gas bubbles in various liquids both experimentally and numerically. Inside a temperature gradient chamber, the overall heat transfer around single bubbles of different volume was measured with calorimetry and the liquid flow with PIV and LDV. In parallel to the experiment, a 2-dimensional mathematical model was worked out and the coupled heat transfer and fluid flow was simulated with a CV-FEM method both under earth gravity level and under microgravity. The results are described in terms of the dimensionless Nusselt-, Peclet-, Marangoni-, Bond- and Prandtl-number. Received on 23 August 1999  相似文献   

20.
The problem of thermocapillary (Marangoni) convection in a layer of viscoelastic liquid is considered. The stability boundary for this problem has been previously calculated in various cases by a number of authors. Here attention is fixed on the magnitude of the growth rate in the parameter regime corresponding to instability. Two noteworthy features are pointed out. First, there are anomalously large values of the growth rate at or near the limiting special case of a Maxwell fluid. Second, the complex values of the growth rate (corresponding to overstability, or the onset of instability via oscillatory motion) coalesce into real (positive) values at moderately supercritical values of the Marangoni number, suggesting that overstability might be elusive to observation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号