首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Due to many important applications, the group III-nitride semiconductors have recently attracted remarkable attention among the semiconductor researchers and engineers. In this paper, we report on the impact of the extrinsic and temporal carriers on the screening of the polarization internal fields. The optical efficiency of GaN/AlGaN multiple quantum well (MQW) nanostructures were studied by means of photoluminescence (PL) and time-resolved PL measurements. Extrinsic carriers come from Si doping in the barriers while temporal carriers originate when the samples are excited by the laser beam. The emission peaks of MQWs in PL spectra of the undoped and low-doped samples show a shift towards higher energy levels as excitation intensity increases, while the other samples do not exhibit such a phenomenon due to the dominance of the extrinsic carriers. The transient data confirm the results of the PL measurements.  相似文献   

2.
采用传输矩阵方法分析极化诱导的内建电场对Mn δ掺杂的GaN/AlxGa1-xN量子阱居里温度(TC)的调制作用.通过解薛定谔方程计算出在不同的内建电场条件下半导体量子阱局域态内的基态空穴能级和波函数分布情况,并在此基础上确定量子阱内Mn δ掺杂情况下TC随内建电场的变化趋势,分析了不同量子阱结构引起的内建电场分布变化及其对TC的影响.在耦合双量子阱中通过调节左右阱的不对称性可以得到TC近3倍的增长. 关键词: GaN 量子阱 内建电场 居里温度  相似文献   

3.
Electrical characteristics of In0.05 Ga0.95N/Al0.07Ga0.9aN and In0.05 Ga0.95N/GaN multiple quantum well (MQW) ultraviolet light-emltting diodes (UV-LEDs) at 400hm wavelength are measured. It is found that for InGaN/AlGaN MQW LEDs, both ideality factor and parallel resistance are similar to those of InGaN/GaN MQW LEDs, while series resistance is two times larger. It is suggested that the Al0.07Ga0.93N barrier layer did not change crystal quality and electrical characteristic of p-n junction either, but brought larger series resistance. As a result, InGaN/AlGaN MQW LEDs suffer more serious thermal dissipation problem although they show higher light output efficiency.  相似文献   

4.
王艳文  吴花蕊 《物理学报》2012,61(10):106102-106102
在有效质量近似的框架下,运用变分方法研究闪锌矿GaN/AlGaN量子点中的激子态及相关光学性质,探讨电子与空穴在量子点中的三维空间受限和有限势效应.数值计算结果显示,当量子点的尺寸增加时, 量子尺寸效应对电子和空穴的影响减弱,基态激子结合能和带间光跃迁能也都降低;而当该量子点中垒层AlGaN中 Al含量增加时,提高了量子点对电子和空穴的束缚作用, 同时基态激子结合能和带间光跃迁能都增加.数值的理论结果与相关实验测量结果一致.  相似文献   

5.
Because of their large band-gap, large high-field electron velocity, large breakdownfield, and large thermal conductivity, GaN and its heterojunction with AlGaN and InGaNhave foreseeable potential in the applications of high-power/temperature electronics, andoptoelectronic devices operative in UV and visible wavelength. Polarization inducedelectric field can reach the magnitude of ~MV/cm[1,2]. For AlGaN/GaN based FETs theconcentration of sheet carrier induced by polarization in the cha…  相似文献   

6.
Optical and electrical properties of InGaN/GaN multiple quantum wells (MQWs) light emitting diodes (LEDs) annealed in pure O2 ambient (500 °C) and pure N2 ambient (800 °C) were systematically investigated. The temperature-dependent photoluminescence measurements showed that high-temperature thermal annealing in N2 ambient can induce indium clusters in InGaN MQWs. Although the deep traps induced by indium clusters can act as localized centers for carriers, there are many more dislocations out of the trap centers due to high-temperature annealing. As a result, the radiative efficiency of the sample annealed in N2 ambient was lower than that annealed in O2 ambient at room temperature. Electrical measurements demonstrated that the LEDs annealed in O2 ambient were featured by a lower forward voltage and there was an increase of ~41% in wall-plug efficiency at 20 mA in comparison with the LEDs annealed in N2 ambient. It is thus concluded that activation of the Mg-doped p-GaN layer should be carried out at a low-temperature O2 ambient so as to obtain LEDs with better performance.  相似文献   

7.
The properties of AlxGa1−xN/GaN high electron mobility transistor (HEMT) impacted by pressure are characterized quantitatively. The results indicate that the dislocation density increases as the critical thickness decreases with increasing pressure. The two-dimensional electron gas density was found to be linearly changeable with the pressure. A simulation has been completed to verify the influence of electron mobility. The results show that the misfit dislocation scattering induced by the pressure is a major limiting factor for the properties of HEMT.  相似文献   

8.
The TiberCAD simulation tool for calculation of optical and electronic properties of nanostructured devices has been used to study spontaneous emission of a GaN quantum dot embedded in an AlGaN nanocolumn. Macroscopic calculations provide corrections to the quantum calculation, showing the role of strain and the polarization field in spectra and the electron and hole states arrangement.  相似文献   

9.
Undoped AlGaN/GaN heterostructures with different content and thickness of AlGaN layer are investigated by photoreflectance (PR) spectroscopy. We have observed PR resonances related to an absorption in both GaN and AlGaN layers. The character of these resonances has been analyzed, and PR lines associated with excitonic and band-to-band absorption in the GaN layer and band-to-band absorption in the AlGaN layer have been identified. The transition related to band-to-band absorption possesses characteristic Franz–Keldysh oscillations (FKOs) associated with a built-in electric field. The electric field in the AlGaN layer obtained on the basis of the analysis of FKOs has been found to be in the range of 244–341 kV/cm. The value of the field has been found to decrease with the increase in AlGaN thickness and to increase with the increase in Al concentration. The surface potential for AlGaN layers has been found to increase with the increase in Al mole fraction and has been estimated to be in the range of 1.0–1.7 eV.  相似文献   

10.
By analyzing the evolution of time-resolved photoluminescence spectra, it is detected experimentally for the first time that there is a correlated effect of built-in electric fields and of long-lived localized states on the formation of emission in quantum wells based on nitrides of Group III elements. It is shown that light-emitting diode structures can be classified for commercial applications by studying time-resolved photoluminescence spectra.  相似文献   

11.
刘红侠  高博  卓青青  王勇淮 《物理学报》2012,61(5):57802-057802
基于等效薄层电荷近似模拟表征极化电荷的作用, 通过自洽求解Poisson-Schrödinger方程以及求解载流子连续性方程, 计算并且讨论了p-AlGaN层掺杂浓度和界面极化电荷对AlGaN/GaN异质结p-i-n紫外探测器能带结构和电场分布以及光电响应的影响. 结果表明, 极化效应与p-AlGaN层掺杂浓度相互作用对探测器性能有较大影响. 其中, 在完全极化条件下, p-AlGaN层掺杂浓度越大, p-AlGaN层的耗尽区越窄, i-GaN层越容易被耗尽, 器件光电流越小. 在一定掺杂浓度条件下, 极化效应越强, p-AlGaN层的耗尽区越宽, 器件的光电流越大. 最后还分析了该结构在不同温度下的探测性能, 证明了该结构可以在高温下正常工作.  相似文献   

12.
In this study rectangular AlGaN/AlN/GaN heterostructure field-effect transistors(HFETs) with 22-nm and 12-nm AlGaN barrier layers are fabricated, respectively. Using the measured capacitance–voltage and current–voltage characteristics of the prepared devices with different Schottky areas, it is found that after processing the device, the polarization Coulomb field(PCF) scattering is induced and has an important influence on the two-dimensional electron gas electron mobility.Moreover, the influence of PCF scattering on the electron mobility is enhanced by reducing the AlGaN barrier thickness.This leads to the quite different variation of the electron mobility with gate bias when compared with the AlGaN barrier thickness. This mainly happens because the thinner AlGaN barrier layer suffers from a much stronger electrical field when applying a gate bias, which gives rise to a stronger converse piezoelectric effect.  相似文献   

13.
The cathodoluminescence (CL) spectra of AlGaN/GaN heterostructures grown on sapphire substrate were studied before and after gamma irradiation treatment. The CL spectroscopy results reveal strong yellow and blue luminescence transformation under gamma radiation treatment. The changes in CL spectra are compared with changes in the electrical characteristics of two-dimensional gas in AlGaN/GaN heterostructures. The origins of the observed improvement in properties of AlGaN/GaN heterostructures after gamma radiation treatment with 1 × 106 rad are discussed on the basis of compensation and structural ordering of native defects.  相似文献   

14.
Spontaneous and piezoelectric polarization effects on the linewidth enhancement factor e of (0001)-oriented wurtzite (WZ) GaN/AlGaN quantum-well (QW) lasers are investigated using a many-body self-consistent (MB-SC) model. The results are compared with those of a many-body flat-band (MB-FB) model and a free-carrier flat-band (FC-FB) model ignoring spontaneous and piezoelectric polarization. The MB-FB model shows a significant increase of e at the peak gain position at high carrier densities compared to that of the FC-FB model. This is because the refractive index change at high carrier densities increases with the inclusion of the Coulomb enhancement effect. With the inclusion of the internal field, the differential gain and the differential index change (dg/dN and -d(ne)/dN) are reduced compared to those for the MB-FB model, because the optical matrix elements of the MB-SC model decrease with the inclusion of the internal field. In the case of a well width of 30 Å, the MB-SC model has a smaller e factor than that of the MB-FB model. On the other hand, in the case of a well width of 50 Å, the MB-SC model has a larger e factor than that of the MB-FB model at a larger peak gain because the reduction rate of dg/dN is larger than that of -d(ne)/dN for a larger peak gain. PACS 85.60.Bt; 85.30.De; 85.30.Vw; 78.20.Bh  相似文献   

15.
Magnetotransport measurements are carried out on the AlGaN/AlN/GaN in an SiC heterostructure, which demonstrates the existence of the high-quality two-dimensional electron gas (2DGE) at the AlN/GaN interface. While the carrier concentration reaches 1.32 × 1013 cm - 2 and stays relatively unchanged with the decreasing temperature, the mobility of the 2DEG increases to 1.21 × 104 cm2/(V·s) at 2 K. The Shubnikov—de Haas (SdH) oscillations are observed in a magnetic field as low as 2.5 T at 2 K. By the measurements and the analyses of the temperature-dependent SdH oscillations, the effective mass of the 2DEG is determined. The ratio of the transport lifetime to the quantum scattering time is 9 in our sample, indicating that small-angle scattering is predominant.  相似文献   

16.
张金风  王冲  张进城  郝跃 《中国物理》2006,15(5):1060-1066
It was reported by Shen et al that the two-dimensional electron gas (2DEG) in an AlGaN/AlN/GaN structure showed high density and improved mobility compared with an AlGaN/GaN structure, but the potential of the AlGaN/AlN/GaN structure needs further exploration. By the self-consistent solving of one-dimensional Schr\"{o}dinger--Poisson equations, theoretical investigation is carried out about the effects of donor density (0--1\times 1019cm-3 and temperature (50--500K) on the electron systems in the AlGaN/AlN/GaN and AlGaN/GaN structures. It is found that in the former structure, since the effective \Delta Ec is larger, the efficiency with which the 2DEG absorbs the electrons originating from donor ionization is higher, the resistance to parallel conduction is stronger, and the deterioration of 2DEG mobility is slower as the donor density rises. When temperature rises, the three-dimensional properties of the whole electron system become prominent for both of the structures, but the stability of 2DEG is higher in the former structure, which is also ascribed to the larger effective \Delta Ec. The Capacitance--Voltage (C-V) carrier density profiles at different temperatures are measured for two Schottky diodes on the considered heterostructure samples separately, showing obviously different 2DEG densities. And the temperature-dependent tendency of the experimental curves agrees well with our calculations.  相似文献   

17.
Photoreflectance spectroscopy was used to measure the barrier electric field strength F of as-grown AlGaN/GaN heterostructures on Si(111) substrate with two-dimensional electron gases in the temperature range from 80 up to 295 K. The Al-contents were in the range from 12 to 20%. Despite the difference of Al-contents and the large temperature variation we find only minute changes of F. This behaviour is explained by an almost constant strain state and thus a constant piezoelectric polarisation, which was concluded from the analysis of the GaN free excitonic transitions observed by photoluminescence excitation spectroscopy. Self-consistent conduction band calculations point to a pinning of the potential of the bare surface at 0.6 V, attributed to a large density of surface donor states.  相似文献   

18.
Mg-doped AlGaN and GaN/AlGaN superlattices are grown by metalorganic chemical vapour deposition (MOCVD) Rapid thermal annealing (RTA) treatments are carried out on the samples. Hall and high resolution x-ray diffraction measurements are used to characterize the electrical and structural prosperities of the as-grown and annealed samples, respectively. The results of hall measurements show that after annealing, the Mg-doped AIGaN sample can not obtain the distinct hole concentration and can acquire a resistivity of 1.4 ×10^3 Ωcm. However, with the same annealing treatment, the GaN/AlGaN superlattice sample has a hole concentration of 1.7 × 10^17 cm-3 and a resistivity of 5.6Ωcm. The piezoelectric field in the GaN/AlGaN superlattices improves the activation efficiency of Mg acceptors, which leads to higher hole concentration and lower p-type resistivity.  相似文献   

19.
For successful construction of sensor devices and their future on-chip integration on nanostructures, this paper discusses the present status of understanding and control of surfaces and heterointerfaces of the AlGaN/GaN material system by reviewing a series of works recently carried out by the authors’ group.Leakage currents in Schottky contacts are explained by the authors’ thin surface barrier (TSB) model. An important role is played by oxygen shallow donors in leakage in AlGaN Schottky diodes. A large leakage reduction has been achieved by a novel surface control process for oxygen gettering. An unprecedented high sensitivity has been obtained in AlGaN/GaN Schottky diode hydrogen sensor by applying the surface control process. Liquid-phase AlGaN/GaN sensors having an open-gate HFET structure show a very good pH sensing capability as well as a good sensing capability of polar liquids. Finally, the selective MBE growth of AlGaN/GaN nanowire network is discussed as a basic hardware structure for the on-chip integration of sensors, paying attention to the heterointerface control.  相似文献   

20.
This paper reports on a comparative study of the spatial distributions of the electrical, optical, and structural properties in an AlGaN/GaN heterostructure. Edge dislocation density in the GaN template layer is shown to decrease in the regions of the wafer where the heterostructure sheet resistance increases and the GaN photoluminescence band-edge energy peak shifts to a high wavelength. This phenomenon is found to be attributed to the local compressive strain surrounding edge dislocation, which will generate a local piezoelectric polarization field in the GaN layer in the opposite direction to the piezoelectric polarization field in the AlGaN layer and thus help to increase the two-dimensional electron gas concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号