首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A device has been developed for the measurement of copper(II) ions (Cu++) in aqueous medium. The device reported here is an electrochemical transistor that consists of two platinum electrodes separated by 100-μm spacing and bridged with an anodically grown polycarbazole film. The undoped polycarbazole film is observed to be highly selective for the Cu(II) ions. In a completed device, the conductivity of the polycarbazole film changes on addition of Cu (II)ions. This change in conductivity is attributed to the conformational changes in the polymer phase on occupation of the Cu(II) ions, without affecting electron/proton transfer. The device turns on by adding 2.5×10−6 M Cu(II) ions and reaches a saturation region above a concentration of 10−4 M Cu(II) ions. In this concentration range, the plot of I D vs log[Cu(II)] is linear. The selectivity of the device for other metal ions such as Cu(I), Co(II), Fe(II), Fe(III), Zn(II), and Pb(II) is also studied.  相似文献   

2.
The behaviour of a polyindole-based microelectrochemical transistor in aqueous and non-aqueous electrolytes is described. The polyindole film was grown onto two closely spaced (100 μm) platinum microelectrodes by anodic oxidation of indole (10 mM) from 0.1 M tetrabutylammonium perchlorate in dichloromethane at 1.1 V vs. Ag/AgCl. The polymerization was carried out for a sufficiently long time in order to connect both Pt microelectrodes, which operated as a transistor when immersed in an electrolytic solution. In this transistor, one microelectrode was a “source” and the other a “drain”; the Ag/AgCl wire reference electrode was used as a “gate”. The drain current (current between source and drain) was modulated by varying the gate potential (potential between source and gate) at a fixed drain potential (potential between source and drain). The transconductances of the transistor were estimated as 0.98 mS/cm and 20.6 mS/cm of channel width (separation between two microelectrodes) in aqueous and non-aqueous solutions, respectively. Received: 6 April 1999 / Accepted: 24 August 1999  相似文献   

3.
Complexes CuL3Cl2, PdL2Cl2 and PtL2Cl2, where L is a novel ligand from the series of 2-substituted 5-aminotetrazoles, namely 5-amino-2-tert-butyltetrazole (1), have been synthesized by the reaction of metal(II) chlorides with 1 and characterized by IR spectroscopy, thermal and X-ray analyses. The crystallographic structural analysis of these complexes revealed that 1 acts as a monodentate ligand coordinated to the metal via endocyclic N4 atom. Platinum complex demonstrates promising cytotoxicity against human cervical carcinoma cells with IC50 value average between those of cisplatin and carboplatin.  相似文献   

4.
EPR spectra of four bis(N,N-dialkyl-L-α-aminoacidato) copper(II) complexes were studied with the aim to determine the effect of the water molecules dissolved in organic solvents on the electronic states of copper(II). It was shown that water dissolved in methylene chloride or dioxan influence the copper(II) electronic states. If the amino acid side chains are long enough to form the aliphatic intramolecular van der Waals contacts, the water molecules will induce the change in the conformation of the whole complex.  相似文献   

5.
The structures of 41 Ni(II) and 17 Cu(II) complexes of macrocyclic quadridentate ligands have been analyzed, and are discussed about bond lengths, bond angles, conformations, and configurations, upon which many conclusions are formed. The inter- or intra-molecular hydrogen bonds exist among ligands and hydrates in many compounds and play an important role in the structures. There are exhibited two distinct peaks on the histogram of the average Ni-N distances, corresponding to four coordination and six coordination; these average Ni-N distances are 1.95(4) Å and 2.10(5) Å, respectively. The most probable structures of Ni(II) macrocyclic compounds have coordination number six for the metal ion, chair forms for six-membered rings, planar structure for the metal ion and the four donor atoms of the quadridentate ligand and an inversion center at the central metal ion.  相似文献   

6.
A new electrochemical sensing platform was designed for sensitive detection of copper(II) (Cu2+) based on click conjugation of two short oligonucleotides by using methylene blue‐functionalized hairpin DNA as the template. The analyte (Cu2+) was in situ reduced to Cu+ by sodium ascorbate, which catalyzed the click conjugation between two single‐stranded oligonucleotides one was labelled with a 5′‐alkyne and the other with 3′‐azide group via the Cu+‐catalyzed azide‐alkyne cycloaddition. The newly formed long‐chain oligonucleotide induced the conformational change of hairpin DNA to open the hairpin, resulting in methylene blue far away from the electrode for the decrease of redox current. Under optimal conditions, the decrease in the electronic signal was directly proportional to target Cu2+ concentration, and allowed the detection of Cu2+ at a concentration as low as 1.23 nM. Our strategy also displayed high selectivity for Cu2+ against other metal ions owing to the highly specific Cu+‐catalyzed click chemistry reaction, and was applicable for monitoring of Cu2+ in drinking water with satisfactory results.  相似文献   

7.
The equilibria occurring in aqueous solutions of N,N′-bis(β-carbamoylethyl)ethylenediamine, N,N′-bis(β-carbamoylethyl)trimethylenediamine, N,N′-bis(β-carbamoylethyl)-1,2-propylenediamine, and N,N′-bis(β-carbamoylethyl)-2-hydroxytrimethylenediamine with protons and copper(II) ions as well as the deprotonation reactions of the copper (II) complexes of these four ligands have been studied by calorimetry at T=25.0°C and I=0.10 mol dm?3 (NaClO4). The enthalpy changes and the entropy changes for these reactions are reported and discussed.  相似文献   

8.
Two copper(II) complexes [CuL1Cl]n (1) and [CuL2Cl] (2) with singly condensed tridentate Schiff-base ligands [HL1 = 6-amino-3-methyl-1-phenyl-4-azahex-3-en-1-one and HL2 = 6-diethylamino-3-methyl-1-phenyl-4-azahex-3-en-1-one] have been synthesized and structurally characterized by X-ray crystallography. Complex 1 is a single-chloro-bridged one-dimensional polymer, whereas 2 is a monomeric square-planar complex. The H-bonding interactions of the amine hydrogen and the non-bonding interactions of phenyl groups in the Schiff base play important roles for the structural variations.  相似文献   

9.
报导在尿素存在下通过均相沉淀法由硝酸铜和重铬酸铵制备复合均匀胶体粒子的结果.研究了一些实验参数对其组成、形态和粒子大小的影响.确定了胶体粒子的制备条件.结果观测到,由硝酸铜和重铬酸铵溶液形成了球形的多刺的粒子,它的组成为水含铅酸铜.  相似文献   

10.
Complexes of naturally occurring hydroxynaphtho-quinone, lapachol (2-hydroxy-3(3-methyl-2-buthenyl)-1,4-naphthoquinone = HL) with Co(II), Ni(II) and Cu(II) have been prepared by reaction of the corresponding acetates with the ligand (HL) in ethanol. The molecular and crystal structures were determined for [CoL2(EtOH)2] (1), [NiL2(EtOH)2] (2), and [CuL2(py)2] (3). In all cases the deprotonated lapachol behaves as chelating bidentate ligand. The complexes were also characterized by elemental analyses, cyclic voltammetry, and FAB-MS.  相似文献   

11.
The nickel(II) and copper(II) complexes of meso-3,6,6,9-tetramethyl-4,8-diazaundecane-2,10-dione dioxime (meso-HM-PAO) have an intramolecular hydrogen bond between cis oxime groups. [Cu(meso-HM-PAO-H)(H2O)](NCS) crystallizes in space group P21/n with a = 7.692(1), b = 12.028(2), c=20.235(3) Å, β=93.03(1)°, Z = 4 and Dc=1.46 g/cm3. The final R value for this complex was 0.034 for 2223 observed reflections with I ≥ 2.5σ (I). The Cu(II) coordination is a distorted square pyramid. The Cu(II) ion is five-coorinated with the diazadioxime N atoms equatorial and water O atom axial. The Cu(II) is 0.12 Å from the equatorial plane towards the hydrate. The equatorial Cu-N distances span a narrow range, 1.953(3)-1.999(3) Å. The axial Cu-O distance is 2.314(3) Å. The thiocyanate group is almost linear. The intramolecular O ?O hydrogen bond length is 2.479(4) Å. [Ni(meso-HM-PAO-H)](ClO4) crystallizes in space group P21/c with a = 14.774(3), b = 12.752(3), c = 20.035(4) Å, β = 92.94(3)°, Z = 8 and Dc = 1.51 g/cm3. The final R value for the complex was 0.053 for 4794 observed reflections with F ≥ 4σ (F). The coordination about Ni(II) is a slightly distorted square plane. The Ni(II) ion is 0.0673(7) Å from the best plane of the four donor nitrogen atoms away from the perchlorate ion. The Ni-N distances span a narrow range 1.863(4)-1.927(4) Å. There are two molecules per asymmetrical unit resulting in eight molecules being packed in an unit cell; they are bound together by van der Waals interactions. The O-H ?O bonds of these complexes give characteristic infrared absorptions as well as chemical shift of the 1H NMR signal (Ni complex).  相似文献   

12.
Copper(II) coordination compounds with ferulic acid   总被引:1,自引:0,他引:1  
The first two molecular structures of the ferulic acid (3-(4-hydroxy-3-methoxyphenyl)-2-propenoic acid, C10H10O4) coordination compounds are presented, namely, [Cu2(C10H9O4)4(CH3CN)2] 1 and [Cu2(C10H9O4)4(C6H6N2O)2]·4CH3CN (C6H6N2O = nicotinamide) 2. Both compounds were synthesised from the starting mixture of Cu2O and CuCl upon copper oxidation in the acetonitrile solution. The single-crystal X-ray diffraction analysis of 1 and 2 reveals the binuclear structure of the ‘paddlewheel’ type for both complexes. 1 and 2 are unstable outside mother liquid due to loosely bound acetonitrile molecules. The final products of decomposition are [Cu2(C10H9O4)4] 1a and [Cu2(C10H9O4)4(C6H6N2O)2] 2a, which were characterized by several physico-chemical methods. The triplet X-band EPR spectra of 1a and 2a, showing signals BZ1  15 mT, B2  460 mT and BZ2  580 mT, are in agreement with the expected data for the binuclear tetracarboxylate units, found in the structures of the parent complexes 1 and 2. Together with the room temperature magnetic susceptibility data, μeff/B.M. 1.40 (1a), 1.48 (2a), the EPR spectra analysis confirm the antiferromagnetic interaction in 1a and 2a. This is suggesting preservation and stability of the paddlewheel structures in 1a and 2a.  相似文献   

13.
The complexation of the non-selective β-blocker nadolol, HL, 1 with copper(II) leads to formation of mono-and dinuclear complexes depending mainly on the metal-to-ligand molar ratio. The mononuclear violet complex CuL2·2Solv, 2, was obtained in a soluble form at metal-to-ligand molar ratio Cu(II): HL ≤ 1: 10 in methanolic or slightly alkaline aqueous solutions. The dinuclear green complex Cu2L2Cl2·H2O, 3 was synthesized at Cu(II): HL ≥ 1: 2 molar ratio in methanolic solutions. The complexes were studied using spectral (UV-Vis, FT-IR, EPR), magnetochemical, thermogravimetric methods and elemental analysis. In the complexes nadolol acts as a monoanionic bidentate ligand coordinated to copper(II) through the NH-and the deprotonated OH-groups of its aminoalcohol fragment.   相似文献   

14.
Mixed ligand dinuclear copper(II) complexes of the general formula [Cu2(Rdtc)tpmc)](ClO4)3 with octaazamacrocyclic ligand tpmc and four different heterocyclic dithiocarbamate ligands Rdtc?, as well as the complexes [Cu2(tpmc)](ClO4)4 and [Cu(tpmc)](ClO4)2?2H2O were studied in aqueous NaClO4 and HClO4 solutions by cyclic voltammetry on glassy carbon electrode. The electrochemical properties of the ligands and Cu(II) complexes were correlated with their electronic structure. Conductometric experiments showed different stoichiometry in complexation of tpmc with Cu2+ ions and transport of ions in acetonitrile and in aqueous media. These studies clarified the application of this macrocyclic ligand as ionophore in a PVC membrane copper(II) selective electrode and contributed elucidation of its sensor properties.  相似文献   

15.
Reaction of picolinamide (pca) with potassium tricyanomethanide (tcm) and copper(II) perchlorate in 1-propanol gave [Cu(pca)2(tcm)2] (1a and 1b) while addition of 2-(aminomethyl)pyridine (2-ampy) provided [Cu(pca)(2-ampy)(tcm)](ClO4) (2). These compounds have been characterized by IR, powder X-ray diffraction, single crystal X-ray diffraction, combustion analysis, and temperature-dependent magnetic susceptibility. Compound 1a crystallized in the monoclinic space group C2/c whereas 1b and 2 crystallized in the triclinic space group Pī. In 1a, the copper complexes stack alternately with semi-coordinated tcm ions creating layers, further stabilized by hydrogen bonding to neighboring layers. In 1b, the tcm ions are coordinated to complete the octahedral coordination sphere around the copper ions and form staggered layers parallel to the ab face diagonal. In 2, stacks of copper complexes form bilayers, held together by hydrogen bonding between tcm ions and amino groups, parallel to the a axis. Variable temperature magnetic susceptibility data were collected on 1 and 2 from 1.8–310 K. The data were fit to the Curie–Weiss law which showed no significant magnetic exchange as expected based upon the crystal structures [1 ? Curie constant = 0.419(2) emu-K/mol-Oe, θ = ?0.10(6)°; 2 – Curie constant = 0.438(1) emu-K/mol-Oe, θ = 0.05(3)°].  相似文献   

16.
Copper(II) tetrafluoroborate catalyzes efficiently the selective opening of epoxides by amines leading to the synthesis of β-amino alcohols. The reaction works well with aromatic and aliphatic amines in high yields under solvent-free conditions.  相似文献   

17.
《Analytical letters》2012,45(10):1917-1925
Abstract

This work characterizes a newly developed, sensitive and convenient spectrophotometric procedure for determination of sub-ppm concentrations of hydrazine and its organic derivatives. The method is based on formation of the cuprous neocuproine chelate after reaction of hydrazines with a prepared aqueous solution of the copper (II)-neocuproine complex. The cuprous chelate is then directly measured in aqueous solution at 458 nm. The effect of several experimental conditions influencing the reaction are presented and the method was employed for the analyis of 5 different hydrazine compounds. The standard deviation did not exceed ± 0.47%.  相似文献   

18.
Epoxides undergo a highly efficient Meinwald rearrangement in the presence of catalytic quantities of copper(II) tetrafluoroborate to give carbonyl compounds in high yields and with excellent selectivity. The low toxicity and ease of handling of this reagent make it an attractive alternative to the more corrosive or costly Lewis acids frequently employed.  相似文献   

19.
Since the copper ions (Cu2+) play a fatal role in many foundational physiological processes, it is important to develop a simple, highly sensitive and selective sensor for Cu2+ detection in living systems. Herein, an intramolecular charge transfer (ICT) and dansyl-based fluorescent chemosensor 1 was designed, synthesized and characterized for the sensitive and selective quantification of Cu2+. It exhibited remarkable fluorescence quenching upon addition of Cu2+ over other selected metal ions, attributed to the complex formation between 1 and Cu2+ with the association constant 6.7 × 105 M?1. The sensor 1 showed a fast and linear response towards Cu2+ in the concentration range from 0 to 12.5 × 10?6 mol L?1 with the detection limit of 2.5 × 10?7 mol L?1. This detection could be carried out in a wide pH range of 5.0–14. Furthermore, sensor 1 can be used for detecting Cu2+ in living cells.  相似文献   

20.
Three new members of the copper/carboxylato/heterocyclic diimine family, namely [Cu(GLYO)(2, 2′‐bipy)]2 · nH2O (n = 4 ( 1 ) or 6 ( 2 ), H2GLYO = glycolic acid, 2, 2′‐bipy = 2, 2′‐bipyridine) and {[Cu(AcO)2(4, 4′‐bipy)] · 3H2O}n ( 3 ) (AcO = acetato, 4, 4′‐bipy = 4, 4‐bipyridine), have been synthesized and characterized by IR and electronic absorption spectroscopy, and the crystal structures have been determined by single crystal X‐ray analysis. 1 and 2 are composed of discrete dinuclear units in which each CuII atom is coordinated in a square pyramidal arrangement to the two nitrogen atoms of a bipyridine ligand, to bridging non‐carboxy oxygen atoms belonging to two glycolato ligands, and to one of the carboxy oxygen atoms of one of these glycolato ligands. The Cu··Cu distance is 3.0666(5)Å. Compound 3 consists of linear chains of dinuclear units in which each CuII is coordinated to one non‐bridging monodentate acetato ligand, to two acetato ligands that each bridge via a single oxygen atom, and to one nitrogen atom of each of two mutually trans bis‐monodentate 4, 4′‐bipyridine ligands that link the repeat units of the polymer. The coordination polyhedra are square pyramids, and the Cu··Cu distance within each dimeric repeat unit is 3.502(2)Å. The temperature dependence of their magnetic susceptibilities shows there to be weak antiferromagnetic interaction between the metal atoms of each dimer in all three complexes, with fitting parameter values of —2J = 1.3 cm—1 and g = 2.09 for 1 and 2 , and —2J = 1.4 cm—1 and g = 2.15 for 3 . The X‐band EPR spectra show signals corresponding to the dinuclear units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号