共查询到15条相似文献,搜索用时 52 毫秒
1.
采用速凝工艺制备了主相合金铸片,由其微观形貌分析可见,富Nd相呈薄层状均匀分布在主相晶界处。XRD分析表明铸带形成了明显的取向织构。使用普通熔炼方法熔炼几种不同成分的辅相合金。将主相合金与辅相合金配比,运用双合金法工艺制备出烧结NdFeB磁体。研究表明Pr替代Nd有利于提高磁体的剩磁。 相似文献
2.
用模压成型方法制备HDDR粘结NdFeB磁体的成型性研究 总被引:6,自引:0,他引:6
在形状复杂或大尺寸的模压成型粘结磁体制备过程中,由于粉末颗粒间以及磁粉与模壁间的摩擦,造成沿压制方向的压制压力递减,使得磁体密度的不均匀分布的现象,成为不可避免,为了改善磁体密度分布不均匀的现象,本研究选取用HDDR NdFeB磁粉模压成型制备的薄壁环作为研究对象,系统地研究了润滑剂的添加量以及润滑剂和增强剂的添加方式对磁体密度、密度分布的均匀性以及磁体抗压强度的影响,通过复合添加润滑剂和增强剂的方法,可以保证在磁体抗压强度不降低的前提下,提高磁体的密度,改善密度分布的均匀性,从而改善粘结磁体的成型性。 相似文献
3.
工业生产N46与N45H烧结NdFeB永磁体的结构和性能 总被引:11,自引:1,他引:11
通过优化合金成分设计和改进合金铸锭技术、合金粉末制备技术、磁场取向成型技术以及烧结技术,应用全部国产设备与国内通用的工业生产烧结NdFeB永磁的原材料,避免使用镓(Ga)等稀有贵重金属元素,实现了N46与N45H等高性能烧结NdFeB磁体的工业化生产.N46烧结NdFeB磁体的典型磁性能为Br=1.392T(13.92kGs),BH.=1004kA@m-1(12.62kOe),JH.=1085kA@m-1(13.64kOe),Hk=1008kA@m-1(1267kOe),(BH)max=366kJ@m-3(45.9MGOe).N45H烧结NdFeB磁体的典型磁性能为Bx=1.386T(13.86kGs),BH.=1059kA@m-1(13.32kOe),JHc=1418kA@m-1(17.83kOe),Hk=1357kA@m-1(17.06kOe),(BH)max=364kJ@m-3(45.8MG0e).SEM观察和XRD分析结果表明,生产的高性能产品具有良好的取向度和晶粒细小而均匀的显微组织. 相似文献
4.
通过优化合金成分设计与改进速凝片铸技术、烧结技术,应用国内通用的工业生产烧结钕铁硼磁体的各类原材料,在工业生产线上实现了45UH高性能烧结钕铁硼磁体的批量生产。SEM观察和XRD分析结果表明:磁体具有比较高的取向度;其显微组织致密、精细而均匀,平均晶粒尺寸约为5μm。45UH烧结钕铁硼磁体的典型磁性能为Br=1.363 T,Hcb=1060 kA.m-1,Hcj=2140 kA.m-1,Hk=1625 kA.m-1,(BH)max=366.0 kJ.m-3;其Hcj/79.6 kA.m-1+(BH)max/7.96 kJ.m-3=72.8。在295~453 K温度区间,其剩磁与内禀矫顽力的温度系数分别为-0.108%.K-1和-0.486%.K-1。当L/D=0.7时,在473 K保持2 h磁体开路磁通不可逆损失为4.1%左右。批量生产的45UH烧结钕铁硼磁体,其常温磁性能优异,温度稳定性良好。 相似文献
5.
在烧结型NdFeB永磁体表面制备了锌铬转化膜,确定了成膜的工艺条件。利用盐水全浸试验评定了膜层的耐腐蚀性能,并与电镀锌、电镀镍进行了比较。利用电化学方法测试了成膜处理前后NdFeB永磁体的稳定电位和自腐蚀电流。利用SEM,XPS,EDS和XRD研究了锌铬膜的微观形态和组成,测试了处理前后NdFeB永磁体的磁性能。结果表明,锌铬膜相对于NdFeB永磁体属于阳极型涂层,有电化学保护作用、机械阻挡作用和钝化作用。NdFeB永磁体经锌铬膜处理后耐蚀性能显著提高,磁性能变化不大。 相似文献
6.
烧结型NdFeB永磁材料表面磷化膜的制备及耐蚀性能研究 总被引:1,自引:0,他引:1
研究在烧结型NdFeB永磁材料表面形成无毒、无污染的磷化膜之方法来解决其表面的腐蚀问题。讨论了前处理工艺、磷化液组成、磷化成膜温度、磷化成膜时间等因素对磷化膜制备的影响。以OM、SEM、腐蚀浸泡实验、电化学测试技术等作为表征手段,测试分析了磷化膜的成膜性及耐蚀性能,确定了最佳成膜工艺参数。结果表明:采用新研制的磷化配方及工艺在烧结型NdFeB永磁材料表面能形成致密的磷化膜层,该磷化膜层可有效地对烧结型NdFeB永磁材料进行腐蚀保护。 相似文献
7.
8.
晶粒取向度与烧结钕铁硼磁体的矫顽力 总被引:2,自引:0,他引:2
实验发现,烧结钕铁硼永磁合金的矫顽力随磁体内晶粒取向程度的提高(取向系数a的减小)而下降。根据不同矫顽力理论对各种取向程度磁体矫顽力的计算值与实验结果对比表明:成核机制与钉钆机制和实验结果偏离较大,用反磁化核长大的发动场理论很好地解释了矫顽力的晶粒取向度关系。 相似文献
9.
采用晶界添加MgF2制备烧结NdFeB磁体,通过扫描电镜、透射电镜和性能测试,研究了烧结NdFeB磁体的微观组织及其对磁性能、电阻率的提高和耐腐蚀性能的影响.结果表明:添加适量MgF2可实现在磁体剩磁、矫顽力和电阻率提高的基础上,同时提高材料的腐蚀电位,并且在极化曲线的阳极部分相同电位条件下,具有较小的极化电流密度,从而达到改善NdFeB磁体耐腐蚀性能的目的.磁体显微组织研究表明F元素进入晶界相,形成F含量约为30%(原子分数)、以面心立方为基的有序的NdOxFy相,其与磁性能、电阻率的提高和耐腐蚀性能改善有关. 相似文献
10.
Nd-Fe-B磁体烧结过程晶粒长大行为的研究 总被引:4,自引:0,他引:4
定量描述了Nd-Fe-B磁体烧结过程晶粒长大行为,分析了烧结温度、烧结时间、合金粉末粒度及其分布对烧结过程晶粒长大的影响,讨论了烧结过程晶粒长大机制。在Nd-Fe-B磁体烧结过程开始之后的0—1h时间区段,晶粒长大迅速;随着烧结时间的延长,晶粒长大速度减小。合金粉末平均粒度增大,或者合金粉末粒度分布范围增宽,显著促进Nd-Fe-B磁体烧结过程中晶粒的长大。在Nd-Fe-B磁体的烧结过程中,存在两类晶粒长大机制,即Nd2Fe14B颗粒的溶解与析出、Nd2Fe14B颗粒的并合与长大。Nd2Fe14B颗粒的并合与长大不仅使磁体的平均晶粒尺寸增大,也使晶粒尺寸分布范围增宽,是烧结Nd-Fe-B磁体显微组织中出现异常大晶粒的根本原因。 相似文献
11.
铜、钛复合添加对结NdFeB磁体显微组织和磁性能的影响 总被引:2,自引:0,他引:2
研究了烧结NdFeB磁体晶间合添加Cu和Ti 对磁体显微组织和磁性能的影响,当钛含量小于1.2%时,Cu和Ti晶间复合添加可大幅度提高烧结NdFeB磁体的矫顽力,磁变化不大,矫顽力的提高归因于Cu和Ti在主相晶粒表面富集,细化晶粒,阻断主相晶粒之间的磁交换作用,阻碍反磁化畴的传播,当钛含量大于1.2%时,矫顽力略有下降,乘磁急剧下降,乘磁下降的原因在于出现了大量的条状纯钛相。与晶间单独合金化相比,晶间复合合金化可更有效改善NdFeB磁体显微组织与性能。 相似文献
12.
13.
14.
15.
NdFeB 稀土永磁材料阻氢涂层的制备 总被引:2,自引:1,他引:2
从NdFeB稀土永磁材料阻氢的角度出发,对NdFeB阻氢涂层的制备进行了研究。利用厚膜烧结方法和浸涂法在NdFeB磁体表面涂覆Ag/聚合物复合涂层作为NdFeB磁体的阻氢涂层,高压充氢实验结果表明,在10MPa,25 ℃的氢环境中,粘结NdFeB磁体充氢480min未粉碎,最高可达600min,烧结NdFeB磁体充氢180min未粉碎,最高可达280min。NdFeB磁体涂层Ag/聚合物复合涂层前后的磁性能几乎没有变化。 相似文献