首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A high-performance liquid chromatography–UV method for determining DCJW concentration in rat plasma was developed. The method described was applied to a pharmacokinetics study of intramuscular injection in rats. The plasma samples were deproteinized with acetonitrile in a one-step extraction. The HPLC assay was carried out using a VP-ODS column and the mobile phase consisting of acetonitrile–water (80:20, v/v) was used at a flow rate of 1.0 mL min−1 for the effective eluting DCJW. The detection of the analyte peak area was achieved by setting a UV detector at 314 nm with no interfering plasma peak. The method was fully validated with the following validation parameters: linearity range 0.06–10 μg mL−1 (r > 0.999); absolute recoveries of DCJW were 97.44–103.46% from rat plasma; limit of quantification, 0.06 μg mL−1 and limit of detection, 0.02 μg mL−1. The method was further used to determine the concentration–time profiles of DCJW in the rat plasma following intramuscular injection of DCJW solution at a dose of 1.2 mg kg−1. Maximum plasma concentration (C max) and area under the plasma concentration–time curve (AUC) for DCJW were 140.20 ng mL−1 and 2405.28 ng h mL−1.  相似文献   

2.
A simple and effective extraction method based on matrix solid-phase dispersion (MSPD) was developed to determine bifenthrin, buprofezin, tetradifon, and vinclozolin in propolis using gas chromatography–mass spectrometry in selected ion monitoring mode (GC–MS, SIM). Different method conditions were evaluated, for example type of solid phase (C18, alumina, silica, and Florisil), the amount of solid phase and eluent (n-hexane, dichloromethane, dichloromethane–n-hexane (8:2 and 1:1, v/v) and dichloromethane–ethyl acetate (9:1, 8:2 and 7:3, v/v)). The best results were obtained using 0.5 g propolis, 1.0 g silica as dispersant sorbent, 1.0 g Florisil as clean-up sorbent, and dichloromethane–ethyl acetate (9:1, v/v) as eluting solvent. The method was validated by analysis of propolis samples fortified at different concentration levels (0.25 to 1.0 mg kg−1). Average recoveries (four replicates) ranged from 67% to 175% with relative standard deviation between 5.6% and 12.1%. Detection and quantification limits ranged from 0.05 to 0.10 mg kg−1 and 0.15 to 0.25 mg kg−1 propolis, respectively.  相似文献   

3.
To evaluate the pharmacokinetics of a novel analogue of ginkgolide B, 10-O-dimethylaminoethylginkgolide B (XQ-1) in rat plasma in pre-clinical studies, a sensitive and specific liquid chromatographic method with electrospray ionization mass spectrometry detection (LC–ESI–MS) was developed and validated. After a simple extraction with ethyl acetate, XQ-1 was analyzed on a Shim-pack C18 column with a mobile phase of a mixture of 1 μmol L−1 ammonium acetate containing 0.02% formic acid and methanol (55:45, v/v) at a flowrate of 0.3 mL min−1. Detection was performed in selected ion monitoring (SIM) mode using target ions at [M + H]+ m/z 496.05 for XQ-1 and m/z 432.10 for the internal standard (lafutidine). Linearity was established for the concentration range from 2 to 1,000 ng mL−1 . The extraction recoveries ranged from 86.0 to 89.9% in plasma at concentrations of 5, 50, and 500 ng mL−1. The lower limit of quantification was 2 ng mL−1 with 100 μL plasma. The validated method was successfully applied to a pharmacokinetic study after intragastic administration of XQ-1 mesylate in rats at a dose of 20 mg kg−1.  相似文献   

4.
A sensitive method has been developed and validated for the determination of diverse groups of pharmaceuticals, steroid hormones, and hormone-like personal care products in sewage sludge. Samples were extracted by ultrasonic-assisted extraction followed by solid-phase extraction cleanup. For determination of estrogens and hormone-like phenolic compounds, sample extracts were further derivatized with dansyl chloride and purified with silica gel column chromatography to improve the analytical sensitivity. The chemicals were determined by ultra-high-performance liquid chromatography–tandem mass spectrometry (UHPLC-MS/MS) in multiple-reaction monitoring mode. Recoveries ranged mostly from 63% to 119% with relative standard deviations within 15%. Method quantification limits were 0.1–3 ng g−1 dry weight (dw) for sewage sludge. The method was applied to a preliminary investigation of pharmaceuticals and personal care products (PPCPs) in sewage sludge and sediment in the Pearl River Delta, South China. Triclosan, triclocarban, 2-phenylphenol, bisphenol A, and parabens were ubiquitously detected at 3.6–5088.2 ng g−1 dw in sludge and 0.29–113.1 ng g−1 dw in sediment samples, respectively. Estrone, carbamazepine, metoprolol, and propranolol were also frequently quantified in the sludge and sediment samples. The dewatering process caused no significant losses of these PPCPs in sewage sludge.  相似文献   

5.
This paper describes a new and rapid method for accurate quantification of the six ergot alkaloids, ergometrine, ergotamine, ergosine, ergocristine, ergocryptine, and ergocornine, by liquid chromatography–tandem mass spectrometry (LC–MS–MS). The six ergot alkaloids studied have been defined by the European Food Safety Authority (EFSA) as among the most common and physiologically active ones. In addition, the method enables the quantification of the corresponding six epimers (ergo-inines) of these ergot alkaloids. This is of considerable importance in terms of the differences in toxicity of the isomeric forms. The method involves extraction under alkaline conditions using a mixture of acetonitrile and ammonium carbonate buffer followed by a rapid clean-up using dispersive solid-phase extraction with PSA (primary secondary amine) and a short chromatographic LC-run (21 min) with subsequent MS–MS detection. The method was developed and validated using ten different cereal and food samples. The major strength of the new method compared with previously published techniques is the simplicity of the clean-up procedure and the short analysis time. The limits of quantification were 0.17 to 2.78 μg kg−1 depending on the analyte and matrix. Recovery values for the 12 ergot alkaloids spiked into ten different matrices at levels of 5, 50, and 100 μg kg−1 were between 69 and 105% for 85 of 90 recovery measurements made over six days. Measurement uncertainty values were highly satisfactory. At a concentration level of 5 μg kg−1 the expanded measurement uncertainty ranged from ±0.56 to ±1.49 μg kg−1, at a concentration level of 100 μg kg−1 the expanded measurement uncertainty ranged from ±8.9 to ±20 μg kg−1. Both LOQs and measurement uncertainties were dependent on the analyte but almost independent of the matrix. The method performance was satisfactory when tested in a mini-intercomparison study between three laboratories from three different countries. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
A rapid and sensitive liquid chromatography-tandem mass spectrometry assay was developed for the determination of a novel histone deacetylase inhibitor, cyclo{(2S)-2-amino-8-[(aminocarbonyl)hydrazono]decanoyl-1-l-tryptophyl-l-isoleucyl-(2R)-2-piperidinecarbonyl} (SD-2007), in rat serum. The mobile phase consisted of acetonitrile and ammonium formate (10 mM) (85:15 v/v), and the flow rate was 0.25 mL min−1. Chromatographic separations were achieved by isocratic elution on a C18 column. Multiple reaction monitoring was based on the transition of m/z = 681.8 → 83.6 for SD-2007 and 372.1 → 176.1 for trazodone (internal standard). A linearity was observed over a concentration range from 2 to 1,000 ng mL−1 (r 2 > 0.999), with the lower limit of quantification at 2 ng mL−1 with 100 μL of rat serum. The mean intra- and inter-day assay accuracy ranged from 98.5–109.7% to 95.2–102.7%, respectively, and the mean intra- and inter-day precision was between 4.3–11.3% and 2.9–13.3%. The developed assay was applied to a pharmacokinetic study of SD-2007 in rats after intravenous injection (dose 4 mg kg−1).  相似文献   

7.
A simple reversed-phase high-performance liquid chromatographic (HPLC) method has been developed for the simultaneous determination of the antiepileptic drugs (AEDs) zonisamide (ZNS), primidone (PRI), lamotrigine (LTG), phenobarbital (PB), phenytoin (PHT), oxcarbazepine (OXC), and carbamazepine (CBZ) and two of their active metabolites, monohydroxycarbamazepine (MHD) and carbamazepine 10,11-epoxide (CBZE) in human plasma. Plasma (100 μL) was pretreated by deproteinization with 300 μL methanol containing 20 μg mL−1 propranolol hydrochloride as internal standard. HPLC was performed on a C8 column (4.6 mm × 250 mm; particle size 5 μm) with methanol–acetonitrile–0.1% trifluoroacetic acid, 235:120:645 (v/v), as mobile phase at a flow rate of 1.5 mL min−1. ZNS, OXC, and CBZ were monitored by UV detection at 235 nm, and PRI, LTG, MHD, PB, PHT, and CBZE by UV detection at 215 nm. Relationships between response and concentration were linear over the concentration ranges 1–80 μg mL−1 for ZNS, 5–50 μg mL−1 for PRI, 1–25 μg mL−1 for LTG, 1–50 μg mL−1 for MHD, 5–100 μg mL−1 for PB, 1–10 μg mL−1 for CBZE, 0.5–25 μg mL−1 for OXC, 1–50 μg mL−1 for PHT, and 1–25 μg mL−1 for CBZ. Intra-day and inter-day reproducibility were adequate (coefficients of variation were ≤11.6%) and absolute recovery ranged from 95.2 ± 6.13 to 107.7 ± 7.76% for all the analytes; for the IS recovery was 98.69 ± 1.12%. The method was proved to be accurate, reproducible, convenient, and suitable for therapeutic monitoring of the nine analytes.  相似文献   

8.
This paper reports a novel approach for the detection, confirmation, and quantification of 15 selected pyrethroid pesticides, including pyrethins, and two metabolites of dithiocarbamates in foods by ultra-performance liquid chromatography–tandem mass spectrometry (UPLC–MS–MS). The proposed method makes use of a modified QuEChERS (quick, easy, cheap, effective, rugged, and safe) procedure that combines isolation of the pesticides and sample cleanup in a single step. Analysis of pyrethroids and dithiocarbamate metabolites was performed by UPLC–MS–MS operated with electrospray and atmospheric pressure chemical ionization, respectively. Two specific precursor–product ion transitions were acquired per target compound in multiple reaction monitoring (MRM) mode. Such acquisition achieved the minimum number of identification points according to European Commission (EC) document no. SANCO/10684/2009, thus fulfilling the EC point system requirement for identification of contaminants in samples. The method was validated with a variety of food samples. Calibration curves were linear and covered from 1 to 800 μg kg−1 in the sample for all target compounds. Average recoveries, measured at mass fractions of 10 and 100 μg kg−1 for pyrethroids and 5 and 50 μg kg−1 for dithiocarbamate metabolites, were in the range of 70–120% for all target compounds with relative standard deviations below 20%. Method limits of quantification (MLOQ) were 10 μg kg−1 and 5 μg kg−1 for pyrethroids and dithiocarbamate metabolites, respectively. The method has been successfully applied to the analysis of 600 food samples in the course of the first Hong Kong total diet study with pyrethroids and metabolites of dithiocarbamates being the pesticides determined.  相似文献   

9.
A sensitive and effective method for simultaneous determination of triazolopyrimidine sulfonamide herbicide residues in soil, water, and wheat was developed using ultra-performance liquid chromatography coupled with tandem mass spectrometry. The four herbicides (pyroxsulam, flumetsulam, metosulam, and diclosulam) were cleaned up with an off-line C18 SPE cartridge and detected by tandem mass spectrometry using an electrospray ionization source in positive mode (ESI+). The determination of the target compounds was achieved in <2.0 min. The limits of detection were below 1 μg kg−1, while the limits of quantification did not exceed 3 μg kg−1 in different matrices. Quantitation was determined from calibration curves of standards containing 0.05–100 μg L−1 with r 2 > 0.997. Recovery studies were conducted at three spiked levels (0.2, 1, and 5 μg kg−1 for water; 5, 10, and 100 μg kg−1 for soil and wheat). The overall average recoveries for this method in water, soil, wheat plants, and seeds at three levels ranged from 75.4% to 106.0%, with relative standard deviations in the range of 2.1–12.5% (n = 5) for all analytes.  相似文献   

10.
A rapid, sensitive, and specific method for quantification of olmesartan, the prodrug of olmesartan medoxomil, in human plasma, using zidovudine as internal standard, is described. Sample preparation involved a simple solid-phase extraction procedure. The extract was analyzed by high-performance liquid chromatography coupled to electrospray tandem mass spectrometry (LC–MS–MS). Chromatography was performed isocratically on a 5 μm C18 analytical column (50 mm × 4.6 mm i.d.) with water–acetonitrile–formic acid 20:80:0.1 (v/v) as mobile phase. The response to olmesartan was a linear function of concentration over the range 4.82–1,928 ng mL−1. The lower limit of quantification in plasma was 4.82 ng mL−1. The method was successfully applied in a bioequivalence study of an olmesartan formulation after administration as a single oral dose.  相似文献   

11.
A rapid, specific reversed phase HPLC method has been developed for simultaneous determination of olanzapine and fluoxetine in their formulations. Chromatographic separation of these two pharmaceuticals was carried out on an Inertsil C18 reversed phase column (150 mm × 4.6 mm, 5 μm) with a 40:30:30 (v/v/v) mixture of 9.5 mM sodium dihydrogen phosphate (pH adjusted to 6.8 ± 0.1 with triethylamine), acetonitrile and methanol as mobile phase. The flow rate 1.2 mL min−1 and the analytes are monitored at 225 nm. Paroxetine was used as internal standard. The assay results were linear from 25 to 75 μg mL−1 for olanzapine (r 2 ≥ 0.995) and 100–300 μg mL−1 for fluoxetine (r 2 ≥ 0.995), showed intra- and inter-day precision less than 1.0%, and accuracy of 97.7–99.1% and 97.9–99.0%. LOQ was 0.005 and 0.001 μg mL−1 for olanzapine and fluoxetine, respectively. Separation was complete in less than 10 min. Validation of the method showed it to be robust, precise, accurate and linear over the range of analysis.  相似文献   

12.
An optimized extraction and cleanup method for the analysis of chlortetracycline (CTC), doxycycline (DC), oxytetracycline (OTC) and tetracycline (TC) in soil is presented. Soil extraction in a pressurized liquid extraction system, followed by extract clean up using solid-phase extraction (SPE) and tetracycline determination by liquid chromatography tandem mass spectrometry (LC-MS/MS) provided appropriate efficiency and reproducibility. Different dispersing agents and solvents for soil extraction and several SPE cartridges for cleanup were compared. The best extraction results were obtained using ethylenediamine tetraacetic acid-treated sand as dispersing agent, and water at 70 °C. The most effective cleanup was obtained using Strata-XTM sorbent in combination with a strong anion exchange cartridge. Recoveries ranged from 71% to 96% and precision, as indicated by the relative standard deviations, was within the range of 8–15%. The limits of quantification (LOQs) by using LC-MS/MS, based on signal-to-noise ratio (S/N) of 10, ranged from 1 μg kg−1 for TC to 5 μg kg−1 for CTC. These results pointed out that this technique is appropriate to determine tetracyclines in soils. Analysis of 100 samples taken in the Valencian Community revealed that, in soil, up to 5 μg kg−1 CTC, 15 μg kg−1 OTC, 18 μg kg−1 TC, and 12 μg kg−1 DC could be detected. Detection of the analytes in several samples, which typify great part of the Spanish agricultural soils, should be outlined as most important result of this study. Electronic supplementary material  The online version of this article (doi: ) contains supplementary material, which is available to authorized users.  相似文献   

13.
(E)-3,5,4′-trimethoxystilbene (BTM-0512) is a resveratrol analog with a variety of pharmacological action, including anti-cancer properties, anti-allergic activity, estrogenic activity, antiangiogenic activity, and vascular-targeting activity against microtubule-destabilization. There is, however, no validated analytical method for quantification of (E)-3,5,4′-trimethoxystilbene in biological matrices, so pharmacokinetic data and suitable methods for determination of the compound in plasma are currently lacking. A rapid and sensitive liquid chromatographic–mass spectrometric method for determination of (E)-3,5,4′-trimethoxystilbene in rat plasma, using carbamazepine as internal standard, has been developed and validated. Plasma samples were treated with acetonitrile to precipitate proteins. Samples were then analyzed by HPLC on a 250mm × 4.6 mm i.d., 5-μm particle, C18 column with methanol–water, 80:20 (v/v), containing 10 mm ammonium acetate and 0.2% formic acid (pH 3.0), as mobile phase, delivered at 0.85 mL min−1. A single-quadrupole mass spectrometer with an electrospray interface operated in selected-ion monitoring mode was used to detect [M + H]+ ions at m/z 271.3 for (E)-3,5,4′-trimethoxystilbene and m/z 237.5 for the internal standard. (E)-3,5,4′-trimethoxystilbene and the internal standard eluted as sharp, symmetrical peaks with retention times of 8.9 and 4 min, respectively. Calibration plots for (E)-3,5,4′-trimethoxystilbene in rat plasma at concentrations ranging from 0.01 to 5.0 μg mL−1 were highly linear. Intra-day and inter-day precision, as RSD, was <12.9%, and accuracy was in the range 94.8–104.7%. The limit of detection in plasma was 0.005 μg mL−1. The method was successfully used to determine the concentration of (E)-3,5,4′-trimethoxystilbene after oral administration of 86 mg kg−1 of the drug to Sprague–Dawley rats and can be used to investigate the pharmacokinetics of the compound.  相似文献   

14.
A multiresidue method has been developed for the simultaneous determination of sulfadiazine, sulfathiazole, sulfapyridine, sulfamerazine, sulfamethoxydiazine, sulfamethylthiazole, sulfamethazine, sulfamonomethoxine, sulfamethoxypyridazine, sulfisoxazole, sulfamethoxazole, sulfadimethoxine and sulfaquinoxaline in natural animal casings by HPLC after solid-phase extraction. The sulfonamides were extracted with acetonitrile and the extract cleaned up with an Oasis MCX SPE cartridge prior to analysis. Separation was on a ZOBAX Eclipse XDB-C8 column using gradient elution with acetonitrile/methanol/0.1% acetic acid. The effect of separation conditions on chromatographic behavior and recovery has been studied. Calibration graphs were linear with very good correlation coefficients (r = 0.9983−0.9996) in the concentration range from 0.02 to 1 μg mL−1. The limits of quantitation (LOQ) for the 13 sulfonamides were in the range of 1.5–2.2 μg kg−1. Decision limits (CCα) and detection capabilities (CCβ) were in the range of 105.2–111.0 and 113.0–120.2 μg kg−1, respectively. The recovery for casings spiked with 1.5–100 μg kg−1 ranged from 65.2 to 85.9%. The relative standard deviations (RSDs) of the sulfonamides for six measurements at 100 μg kg−1 were from 2.2 to 7.7%. The applicability of the method to the analysis of salted swine casings, salted sheep casings and dry casing samples was demonstrated.  相似文献   

15.
The purpose of this study was the development and validation of an LC–MS–MS method for simultaneous analysis of ibuprofen (IBP), 2-hydroxyibuprofen (2-OH-IBP) enantiomers, and carboxyibuprofen (COOH-IBP) stereoisomers in fungi culture medium, to investigate the ability of some endophytic fungi to biotransform the chiral drug IBP into its metabolites. Resolution of IBP and the stereoisomers of its main metabolites was achieved by use of a Chiralpak AS-H column (150 × 4.6 mm, 5 μm particle size), column temperature 8 °C, and the mobile phase hexane–isopropanol–trifluoroacetic acid (95: 5: 0.1, v/v) at a flow rate of 1.2 mL min−1. Post-column infusion with 10 mmol L−1 ammonium acetate in methanol at a flow rate of 0.3 mL min−1 was performed to enhance MS detection (positive electrospray ionization). Liquid–liquid extraction was used for sample preparation with hexane–ethyl acetate (1:1, v/v) as extraction solvent. Linearity was obtained in the range 0.1–20 μg mL−1 for IBP, 0.05–7.5 μg mL−1 for each 2-OH-IBP enantiomer, and 0.025–5.0 μg mL−1 for each COOH-IBP stereoisomer (r ≥ 0.99). The coefficients of variation and relative errors obtained in precision and accuracy studies (within-day and between-day) were below 15%. The stability studies showed that the samples were stable (p > 0.05) during freeze and thaw cycles, short-term exposure to room temperature, storage at −20 °C, and biotransformation conditions. Among the six fungi studied, only the strains Nigrospora sphaerica (SS67) and Chaetomium globosum (VR10) biotransformed IBP enantioselectively, with greater formation of the metabolite (+)-(S)-2-OH-IBP. Formation of the COOH-IBP stereoisomers, which involves hydroxylation at C3 and further oxidation to form the carboxyl group, was not observed.  相似文献   

16.
A stability-indicating reversed-phase liquid chromatographic (RPLC) method has been established for analysis of ramipril (RAM) and moexipril hydrochloride (MOEX.HCl) in the presence of the degradation products generated in studies of forced decomposition. The drug substances were subjected to stress by hydrolysis (0.1 m NaOH and 0.1 m HCl), oxidation (30% H2O2), photolysis (254 nm), and thermal treatment (80 °C). The drugs were degraded under basic and acidic conditions and by thermal treatment but were stable under other stress conditions investigated. Successful separation of the drugs from the degradation products was achieved on a cyanopropyl column with 40:60 (v/v) aqueous 0.01 m ammonium acetate buffer (pH 6)–methanol as mobile phase at a flow rate of 1 mL min−1. Detection was by UV absorption at 210 nm. Response was a linear function of concentration over the range 5–50 μg mL−1 (r > 0.9995), with limits of detection and quantitation (LOD and LOQ) of 0.04 and 0.09 μg mL−1, respectively, for RAM and 0.014 and 0.32 μg mL−1, respectively, for moexipril. The method was validated for specificity, selectivity, solution stability, accuracy, and precision. Statistical analysis proved the method enabled reproducible and selective quantification of RAM and MOEX as the bulk drug and in pharmaceutical preparations. Because the method effectively separates the drugs from their degradation products, it can be used as stability-indicating.  相似文献   

17.
In this article a new analytical method for the confirmation and quantification of abamectin residues in avocados is described. The method allows a fast analysis of abamectin homologues using microwave assisted extraction (MAE), solid-phase extraction (SPE) and high-performance liquid chromatography (HPLC) with fluorescence (FL) detection using trifluoroacetic anhydride (TFAA) and N-methylimidazole (NMIM) as derivatizing agents. The mobile phase consisted of water, methanol and acetonitrile (5:47.5:47.5 v/v/v) and was pumped at a rate of 1.1 mL min−1 (isocratic elution). Homogenized avocado samples were extracted once with 20 mL acetonitrile:water 4:1 (v/v) in a microwave oven for 26 min at 700 W with a maximum temperature of 80 °C. MAE operational parameters were optimized by means of an experimental design. Extracts were cleaned using C18 SPE cartridges. Average recoveries of the method at four spiked levels (0.005, 0.01, 0.10 and 1.0 mg kg−1) were found to be in the range 90–100% with good precision (RSD < 12%). The limits of detection (LODs) and quantification (LOQs) of the whole method were 0.001 and 0.003 mg kg−1, respectively, which are lower than the maximum residue limit (MRL) established by the Spanish and the European legislation in avocados (0.01 mg kg−1). Several avocado samples previously treated with the pesticide were also analyzed.  相似文献   

18.
A simple, rapid, and precise reversed-phase high-performance liquid chromatographic method has been developed for simultaneous determination of losartan potassium, ramipril, and hydrochlorothiazide. The three drugs were separated on a 150 mm × 4.6 mm i.d., 5 μm particle, Cosmosil C18 column. The mobile phase was 0.025 m sodium perchlorate–acetonitrile, 62:38 (v/v), containing 0.1% heptanesulphonic acid, pH adjusted to 2.85 with orthophosphoric acid, at a flow rate of 1.0 mL min−1. UV detection was performed at 215 nm. The method was validated for linearity, accuracy, precision, and limit of quantitation. Linearity, accuracy, and precision were acceptable in the ranges 35–65 μg mL−1 for losartan, 1.75–3.25 μg mL−1 for ramipril, and 8.75–16.25 μg mL−1 for hydrochlorothiazide.  相似文献   

19.
A rapid multi-analyte method has been developed for the simultaneous determination of pesticides and mycotoxins in milk by ultra high-performance liquid chromatography coupled to triple quadrupole mass spectrometry (UHPLC–QqQ–MS/MS). A variety of methodologies has been evaluated, including solid-phase extraction (SPE), “dilute-and-shoot” (liquid–liquid extraction-based procedures), and QuEChERS (quick, easy, cheap, effective, rugged, and safe)-based methods. The optimization and development process was carried out considering that the maximum residue level for aflatoxin M1 (AFM1) in milk in the European Union (EU) is set at 0.05 μg kg−1, which is the lowest tolerance in the target compounds. The selected method consisted of an extraction by SPE using C18 as sorbent and methanol as elution solvent. The final determination was performed by UHPLC–QqQ–MS/MS. Matrix-matched standard calibration was used for quantification, obtaining recoveries in the range 60–120% with relative standard deviations <25%, at three spiking levels: 0.5, 10, and 50 μg kg−1 (ten times lower for AFM1). Limits of quantification ranged from 0.20 to 0.67 μg kg−1, which were always below or equal to the established tolerance levels by the EU. Finally, the selected method was applied to different types of milk.  相似文献   

20.
Methylmercury (MeHg) and total mercury (THg) in seafood were determined using species-specific isotope dilution analysis and gas chromatography combined with inductively coupled plasma mass spectrometry. Sample preparation methods (extraction and derivation step) were evaluated on certified reference materials using isotopically enriched Hg species. Solid–liquid extraction, derivation by propylation and automated agitation gave excellent accuracy and precision results. Satisfactory figures of merit for the selected method were obtained in terms of limit of quantification (1.2 μg Hg kg−1 for MeHg and 1.4 μg Hg kg−1 for THg), repeatability (1.3–1.7%), intermediate precision reproducibility (1.5% for MeHg and 2.2% for THg) and trueness (bias error less than 7%). By means of a recent strategy based on accuracy profiles (β-expectation tolerance intervals), the selected method was successfully validated in the range of approximately 0.15–5.1 mg kg−1 for MeHg and 0.27–5.2 mg kg−1 for THg. Probability β was set to 95% and the acceptability limits to ±15%. The method was then applied to 62 seafood samples representative of consumption in the French population. The MeHg concentrations were generally low (1.9–588 μg kg−1), and the percentage of MeHg varied from 28% to 98% in shellfish and from 84% to 97% in fish. For all real samples tested, methylation and demethylation reactions were not significant, except in one oyster sample. The method presented here could be used for monitoring food contamination by MeHg and inorganic Hg in the future to more accurately assess human exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号