首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Investigations have been performed to explore ultrashort laser irradiation effects on the surface topography as well as structural and nonlinear absorption properties of a polymer CR-39. For this purpose, a CR-39 target was exposed in air to 25 fs, 800 nm Ti:sapphire laser radiation at fluences ranging from 0.25 J cm−2 to 3.6 J cm−2. The surface features, structural changes and nonlinear absorption were explored by AFM, Raman Spectroscopy and a Z-scan technique, respectively. Several topographical structures like bumps, explosions and nano cavities have been observed on the irradiated surface. Raman spectroscopy reveals changes in the fundamental structure of the polymer after the irradiation. Nonlinear absorption data contained by the Z-scan technique predict the dominance of three-photon absorption in case of pristine CR-39. Furthermore, nonlinear absorption (three or two photon) increases with increasing laser fluences and is well correlated with surface and structural changes revealed by AFM and Raman spectroscopy.  相似文献   

2.
The effects of ion-beam bombardment on the physical and chemical properties of poly(allyl diglycol carbonate) (CR-39) polymer have been investigated. CR-39 samples were bombarded with 320 keV Ar and 130 keV He ions at fluences ranging from 1 × 1013 to 2 × 1016 ions/cm2. The nature and extent of radiation damage induced were studied by UV–VIS spectrometry, Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) analysis, as well as Vickers' hardness measurements. In addition, the effect of ion fluence on the wetting properties of ion-beam bombarded CR-39 polymer was determined by measuring the contact angle for distilled water. UV–VIS spectra of bombarded samples reveal that the optical band gap decreases with increasing ion fluence for both Ar and He ions. In the FTIR spectra, changes in the intensity of the bands on irradiation relative to pristine samples occurred with the appearance of new bands. XRD analyses showed that the degree of ordering of the CR-39 polymer is dependent on the ion fluence. Changes of surface layer composition and an increase in the number of carbonaceous clusters produced important change in the energy gap and the surface wettability. The surface hardness increased from 10.54 MPa for pristine samples to 28.98 and 23.35 MPa for samples bombarded with Ar and He ions at the highest fluence, respectively.  相似文献   

3.
A study has been made on the UV-VIS and FTIR spectra of CR-39 plastics irradiated with 50 kVp tube X-rays in the dose range 0ndash;45 MR. The optical transmittance over the wavelength region of 200–1000nm decreases with the X-ray exposure, much greater decrease being observed in the UV region. The IR absorption spectra of the irradiated samples show the presence of two new strong absorption bands at the frequencies 655 and 2340 cm−1, indicative of the gas CO2 produced inside the plastic.The absorbance of these bands increases linearly with the X-ray dose.  相似文献   

4.
Long chain polymers owe many of their properties to the structural arrangements of their molecules and are extensively used for many industrial and applied sciences. One of such application is their perspective use in the field of solid-state nuclear track detectors. However they are profoundly influenced by low LET radiations exposure and new structural arrangements may emerge. CR-39 is one of the most popular polymeric track detectors, however its aliphatic nature restricts its applications. Thus in the present investigations the damage densities produced by solar radiations to the polymer have been estimated by analyzing the structural, physical and etching properties of the polymer. The polymer is found to be highly sensitive towards solar radiations and great changes in physical and structural properties of polymer have been observed. The sensitivity of the polymer has been found to decrease by 83.40% during eight months.   相似文献   

5.
A study of the effect of gamma and laser irradiation on the color changes of polyallyl diglycol (CR-39) solid-state nuclear track detector was performed. CR-39 detector samples were classified into two main groups. The first group was irradiated with gamma doses at levels between 20 and 300 kGy, whereas the second group was exposed to infrared laser radiation with energy fluences at levels between 0.71 and 8.53 J/cm2. The transmission of these samples in the wavelength range 300–2500 nm, as well as any color changes, was studied. Using the transmission data, both the tristimulus and the coordinate values of the Commission Internationale de l'Eclairage (CIE) LAB were calculated. Also, the color differences between the non-irradiated samples and those irradiated with different gamma or laser doses were calculated. The results indicate that the CR-39 detector acquires color changes under gamma or laser irradiation, but it has more response to color changes by gamma irradiation. In addition, structural property studies using infrared spectroscopy were performed. The results indicate that the irradiation of a CR-39 detector with gamma or laser radiations causes the cleavage of the carbonate linkage that can be attributed to the ?H abstraction from the backbone of the polymer, associated with the formation of CO2 and ?OH with varying intensities.  相似文献   

6.
A comparative study of the effect of gamma and laser irradiation on the thermal, optical and structural properties of the CR-39 diglycol carbonate solid state nuclear track detector has been carried out. Samples from CR-39 polymer were classified into two main groups: the first group was irradiated by gamma rays with doses at levels between 20 and 300 kGy, whereas the second group was exposed to infrared laser radiation with energy fluences at levels between 0.71 and 8.53 J/cm2. Non-isothermal studies were carried out using thermogravimetry, differential thermogravimetry and differential thermal analysis to obtain activation energy of decomposition and transition temperatures for the non-irradiated and all irradiated CR-39 samples. In addition, optical and structural property studies were performed on non-irradiated and irradiated CR-39 samples using refractive index and X-ray diffraction measurements. Variation in the onset temperature of decomposition T o, activation energy of decomposition E a, melting temperature T m, refractive index n and the mass fraction of the amorphous phase after gamma and laser irradiation were studied.

It was found that many changes in the thermal, optical and structural properties of the CR-39 polymer could be produced by gamma irradiation via degradation and cross-linking mechanisms. Also, the gamma dose has an advantage of increasing the correlation between thermal stability of the CR-39 polymer and bond formation created by the ionizing effect of gamma radiation. On the other hand, higher laser-energy fluences in the range 4.27–8.53 J/cm2 decrease the melting temperature of the CR-39 polymer and this is most suitable for applications requiring molding of the polymer at lower temperatures.  相似文献   

7.
The depth-dependent bulk etch rate has been examined for the gamma-irradiated CR-39 at doses ranging from 20 to 100 kGy. The thickness of the damaged region in gamma-irradiated CR-39 plastics, in which the bulk etch rate was significantly enhanced, was found to be limited in the thin layer near the surface and decreases with increasing the dose-rate, while it barely depend on the total dose. This indicates that it is possible to apply CR-39 plastics as high dose gamma-dosimeter by assessing both the bulk etch rate in the damaged region and its thickness in principle.  相似文献   

8.
9.
Atomic Force Microscope (AFM) has been applied to evaluate the surface roughness and the track sensitivity of CR-39 track detector. We experimentally confirmed the inverse correlation between the track sensitivity and the roughness of the detector surface after etching. The surface of CR-39 (CR-39 doped with antioxidant (HARZLAS (TD-1)) and copolymer of CR-39/NIPAAm (TNF-1)) with high sensitivity becomes rough by the etching, while the pure CR-39 (BARYOTRAK) with low sensitivity keeps its original surface clarity even for the long etching.  相似文献   

10.
在超强脉冲激光与固体靶相互作用中,利用光学CCD相机和光学多道分析仪,分别在固体薄膜靶背表面法线方向测量了渡越辐射(TR)积分成像图案和光谱。测量结果显示:TR空间分布图案呈圆环状,而辐射区域有发散角和光强分布;TR光谱在800 nm附近出现尖峰,是激光的基频波,这一现象归因于超热电子束在输运的过程中产生的微束团而引起的相干渡越辐射;如果考虑超热电子的产生和加热机制,共振吸收和真空加热对超热电子都有贡献,其中占主导地位的加热机制则是共振吸收对电子的加热。  相似文献   

11.
针对短脉冲激光打靶用溅射防护聚合物薄膜做了初步研究。研究了氟化乙丙共聚物(FEP)、全氟烷氧基共聚物和乙烯-四氟乙烯共聚物三种厚度均为25 m的聚合物薄膜的透过率,结果表明FEP薄膜在355 nm处光透过率达93%,有望用于激光打靶的溅射防护。进一步对FEP聚合物薄膜的波前畸变、激光损伤阈值进行了研究,结果表明80 mm的聚合物薄膜在632.8 nm处的透射波前畸变的峰谷值(PV值)为波长的1.006倍; 在采用输出波长355 nm,脉冲宽度9.3 ns的Nd:YAG激光为照射光源波长处,薄膜零损伤概率时的最高激光能量密度为10.35 J/cm2, 100%损伤概率时的最低激光能量密度为11.48 J/cm2。  相似文献   

12.
针对短脉冲激光打靶用溅射防护聚合物薄膜做了初步研究。研究了氟化乙丙共聚物(FEP)、全氟烷氧基共聚物和乙烯-四氟乙烯共聚物三种厚度均为25μm的聚合物薄膜的透过率,结果表明FEP薄膜在355nm处光透过率达93%,有望用于激光打靶的溅射防护。进一步对FEP聚合物薄膜的波前畸变、激光损伤阈值进行了研究,结果表明φ80mm的聚合物薄膜在632.8nm处的透射波前畸变的峰谷值(PV值)为波长的1.006倍;在采用输出波长355nm,脉冲宽度9.3ns的Nd:YAG激光为照射光源波长处,薄膜零损伤概率时的最高激光能量密度为10.35J/cm2,100%损伤概率时的最低激光能量密度为11.48J/cm2。  相似文献   

13.
 在超强脉冲激光与固体靶相互作用中,利用光学CCD相机和光学多道分析仪,分别在固体薄膜靶背表面法线方向测量了渡越辐射(TR)积分成像图案和光谱。测量结果显示:TR空间分布图案呈圆环状,而辐射区域有发散角和光强分布;TR光谱在800 nm附近出现尖峰,是激光的基频波,这一现象归因于超热电子束在输运的过程中产生的微束团而引起的相干渡越辐射;如果考虑超热电子的产生和加热机制,共振吸收和真空加热对超热电子都有贡献,其中占主导地位的加热机制则是共振吸收对电子的加热。  相似文献   

14.
15.
The effect of laser ablation on copper foil irradiated by a short 30 ns laser pulse was investigated by X-ray photoelectron spectroscopy. The laser fluence was varied from 8 to 16.5 J/cm2 and the velocity of the laser beam from 10 to 100 mm/s. This range of laser fluence is characterized by a different intensity of laser ablation. The experiments were done in two kinds of ambient atmosphere: air and argon jet gas.The chemical state and composition of the irradiated copper surface were determined using the modified Auger parameter (α′) and O/Cu intensity ratio. The ablation atmosphere was found to influence the size and chemical state of the copper particles deposited from the vapor plume. During irradiation in air atmosphere the copper nanoparticles react with oxygen and water vapor from the air and are deposited in the form of a CuO and Cu(OH)2 thin film. In argon atmosphere the processed copper surface is oxidized after exposure to air.  相似文献   

16.
Yilbas  B.S.  Arif  A.F.M.  Shuja  S.Z. 《Optical and Quantum Electronics》2001,33(12):1241-1258
The laser short pulse heating initiates nonequilibrium heating of the substrate material, which in turn results in the thermal stresses developing in the region below the surface. The surface temperature can be measured possibly through the monitoring of the resulting surface displacement. This requires in detail investigation into the surface displacement and surface temperature rises across the heated spot during the laser short pulse heating process. In the present study, the laser short pulse heating of gold surface is considered and the temperature rise at the surface and elastic displacement of the surface are investigated. The spatial and temporal distributions of surface displacement and surface temperature are predicted and the elastic response of the substrate material due to temperature rise is explored. It is found that the temporal and spatial distributions of the surface displacement do not follow the temperature rise at the surface. Consequently, care should be taken when measuring the temperature rise at the surface by means of monitoring the surface displacement during a laser short pulse heating process.  相似文献   

17.
汪磊  杨海峰  柳晓军  刘红平 《中国物理 B》2010,19(11):113402-113402
In the ionisation of Rydberg hydrogen atoms near a metal surface,the electron will escape from the nucleus and arrive at the detector in a time sequence.This probability flux train relies on the initial electron wave packet irradiated by the laser pulse.For simplicity,the laser pulse is usually simplified to a delta function in energy domain,resulting in a sharp initial arrival time with an exponentially decaying tail at the detector.Actually and semiclassically,the initial outgoing wave should be modeled as an ensemble of trajectories propagating away from the atomic core in all directions with a range of launch times and a range of energies.In this case,each pulse in the pulse train is averaged out rather than a sharp profile.We examine how energy and time averaging of the electron wave packet affects the resolution of escaping electron pulses and study the energy dependence of the arrival time for each pulse in the ionisation train.An optimization condition for the laser pulse shape to generate narrow ionisation electron pulse in the train is obtained.The ionisation rates with various excitation energy are calculated also,which show the excitation to higher N Rydberg states will narrow the electron pulse as well.  相似文献   

18.
The nonlinear optical properties of an azo-based dye were investigated using Z-scan technique employing 38 ps pulses at 532 and 1064 nm, and 6 ns laser pulses at 532 nm. Large nonlinear absorption and nonlinear refraction were observed at both ps and ns 532 nm in the azoic dye. When excited at ps 1064 nm, this dye displayed a large two-photon absorption cross-section (σ2=1810 GM). Meanwhile, the optical nonlinearity mechanism was discussed in terms of molecular structure, excitation wavelength, and pulse width.  相似文献   

19.
The kinetics of fast processes induced by an ultrashort laser pulse is considered. The reliefs remaining after the action of a series of ultrashort laser pulses {S. A. Akhmanov, V. I. Emelyanov, N. I. Koroteev, et al., Usp. Fiz. Nauk 147, 675 (1985) [Sov. Phys. Usp. 28, 1084 (1985)]; F. Costache, S. Kouteva-Arguirova, and J. Reif, Appl. Phys. A 79, 1429 (2004)} have been studied. A new mechanism of perturbing the surface of the initially ideal crystal face is described. First, the formation of a relief is induced by a single pulse. Second, the relief scale along the target surface is about the heating depth d T ~ 10–100 nm rather than the pump-pulse wavelength λpump ~ 1 μm. Third, the formation of the relief is not attributed to the modulation of the electromagnetic field near the surface due to the interference of the incident light wave with the electromagnetic surface waves on the initial perturbations of the boundary. These three conditions are satisfied for a known instability induced by the interference of the incident and surface waves (see the works cited above [1]). In our case, the nanorelief is formed due to the deformation of the spalled layer by cavitation bubbles owing to the inhomogeneity of the drag force in the target plane. Cavitation is caused by the tension of the substance in the process of the expansion of a heated target. It is similar to the known phenomenon of the cavitation “spallation” in a liquid despite the large difference between the space-time scales of the usual spallation facility and the femtosecond heating. Owing to this difference, usual cavitation does not leave any morphological trace on the outer free surface of the spalled layer.  相似文献   

20.
Under certain conditions, ultrafast pulsed laser interaction with matter leads to the formation of self-organized conical as well as periodic surface structures(commonly reffered to as, laser induced periodic surface structures, LIPSS). The purpose of the present investigations is to explore the effect of fsec laser fluence and ambient environments(Vacuum O_2) on the formation of LIPSS and conical structures on the Ti surface. The surface morphology was investigated by scanning electron microscope(SEM). The ablation threshold with single and multiple(N = 100) shots and the existence of an incubation effect was demonstrated by SEM investigations for both the vacuum and the O_2 environment. The phase analysis and chemical composition of the exposed targets were performed by x-ray diffraction(XRD) and energy dispersive x-ray spectroscopy(EDS), respectively. SEM investigations reveal the formation of LIPSS(nano micro). FFT d-spacing calculations illustrate the dependence of periodicity on the fluence and ambient environment. The periodicity of nano-scale LIPSS is higher in the case of irradiation under vacuum conditions as compared to O_2. Furthermore, the O2 environment reduces the ablation threshold. XRD data reveal that for the O_2 environment, new phases(oxides of Ti) are formed. EDS analysis exhibits that after irradiation under vacuum conditions, the percentage of impurity element(Al) is reduced. The irradiation in the O_2 environment results in 15% atomic diffusion of oxygen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号