首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The XeOSeF5+ cation has been synthesized for the first time and characterized in solution by 19F, 77Se and 129Xe NMR spectroscopy and in the solid state by X-ray crystallography and Raman spectroscopy with AsF6 as its counter anion. The X-ray crystal structures of the tellurium analogue and of the Xe(OChF5)2 derivatives have also been determined: [XeOChF5][AsF6] crystallize in tetragonal systems, P4/n, a=6.1356(1) Å, c=13.8232(2) Å, V=520.383(14) Å3, Z=2 and R1=0.0453 at −60°C (Te) and a=6.1195(7) Å, c=13.0315(2) Å, V=488.01(8) Å3, Z=2 and R1=0.0730 at −113°C (Se); Xe(OTeF5)2 crystallizes in a monoclinic system, P21/c, a=10.289(2) Å, b=9.605(2) Å, c=10.478(2) Å, β=106.599(4)°, V=992.3(3) Å3, Z=4 and R1=0.0680 at −127°C; Xe(OSeF5)2 crystallizes in a triclinic system, , a=8.3859(6) Å, c=12.0355(13) Å, V=732.98(11) Å3, Z=3 and R1=0.0504 at −45°C. The energy minimized geometries and vibrational frequencies of the XeOChF5+ cations and Xe(OChF5)2 were calculated using density functional theory, allowing for definitive assignments of their experimental vibrational spectra.  相似文献   

2.
Differential scanning calorimetry of [Rb0.44(NH4)0.56]2HgCl4 · H2O material showed three anomalies at 340, 355 and 424 K, respectively. The room temperature phase has space group Pcma (a=8.433(1) Å, b=9.1817(9) Å and c=11.954(1)). Phase II (T=350 K) is disordered and exhibits orthorhombic symmetry (a=8.456(13), b=9.202(9) and c=12.011(10) Å). Hydrogen bonding, the nature and the degree of structure (dis)order and the mechanisms of the transitions are discussed. The dielectric constant at different frequencies and temperature revealed a phase transition at T=340 K related to NH4+ reorientation and H+ diffusion, and a characteristic increase above 355 K, which might be due to loss of water of crystallization. Transport properties in this compound appear to be due to an Rb+/NH4+ and H+ ions hopping mechanism.  相似文献   

3.
The compound [Zn(H2O)4]2[H2As6V15O42(H2O)]·2H2O (1) has been synthesized and characterized by elemental analysis, IR, ESR, magnetic measurement, third-order nonlinear property study and single crystal X-ray diffraction analysis. The compound 1 crystallizes in trigonal space group R3, a=b=12.0601(17) Å, c=33.970(7) Å, γ=120°, V=4278.8(12) Å3, Z=3 and R1(wR2)=0.0512 (0.1171). The crystal structure is constructed from [H2As6V15O42(H2O)]4− anions and [Zn(H2O)4]2+ cations linked through hydrogen bonds into a network. The [H2As6V15O42(H2O)]6− cluster consists of 15 VO5 square pyramids linked by three As2O5 handle-like units.  相似文献   

4.
Two novel hydrogen maleato (HL) bridged Cu(II) complexes 1[Cu(phen)Cl(HL)2/2] 1 and 1[Cu(phen)(NO3)(HL)2/2] 2 were obtained from reactions of 1,10-phenanthroline, maleic acid with CuCl2·2H2O and Cu(NO3)2·3H2O, respectively, in CH3OH/H2O (1:1 v/v) at pH=2.0 and the crystal structures were determined by single crystal X-ray diffraction methods. Both complexes crystallize isostructurally in the monoclinic space group P21/n with cell dimensions: 1 a=8.639(2) Å, b=15.614(3) Å, c=11.326(2) Å, β=94.67(3)°, Z=4, Dcalc=1.720 g/cm3 and 2 a=8.544(1) Å, b=15.517(2) Å, c=12.160(1) Å, β=90.84(8)°, Z=4, Dcalc=1.734 g/cm3. In both complexes, the square pyramidally coordinated Cu atoms are bridged by hydrogen maleato ligands into 1D chains with the coordinating phen ligands parallel on one side. Interdigitation of the chelating phen ligands of two neighbouring chains via π–π stacking interactions forms supramolecular double chains, which are then arranged in the crystal structures according to pseudo 1D close packing patterns. Both complexes exhibit similar paramagnetic behavior obeying Curie–Weiss laws χm(T−θ)=0.414 cm3 mol−1 K with the Weiss constants θ=−1.45, −1.0 K for 1 and 2, respectively.  相似文献   

5.
One-dimensional Co(dien)2(VO3)3·(H2O) was prepared from the hydrothermal reaction of NH4VO3, Co2O3, diethylenetriamine (dien) and H2O at 130 °C. The compound crystallizes in the monoclinic system, space group P21/c with a=16.1581(6) Å, b=8.7006(3) Å, c=13.9893(4) Å, β=103.1483(11)°, V=1915.13(11) Å3, Z=4, and R1=0.0268 for 3060 observed reflections. Single crystal X-ray diffraction revealed that the structure is composed of infinite one-dimensional chains formed by corner-sharing VO4 tetrahedra with Co(dien)3+ complex cations and crystallization water molecules occupying the interchain positions, which are held together to a three-dimensional network via extensive hydrogen-bonding interactions. The compound, with a new zig-zag conformation of metavanadate chains, is the first example of vanadium oxides incorporating trivalent transition metal coordination groups. Other characterizations by elemental analysis, IR and thermal analysis are also described.  相似文献   

6.
Structures of AgAF6 (A=Sb, Ta) have been determined by X-ray single crystal studies at ambient temperatures. AgSbF6 crystallizes in space group Ia with a=979.85(4) pm, V=9.4076(12)×108 pm3, z=8, and AgTaF6 crystallizes in space group P42/mcm with a=499.49(4) pm, c=960.51(8) pm, V=2.3964(6)×108 pm3, z=2. Only the crystal system and cell parameters were obtained for the isomorphic AgNbF6; primitive tetragonal, a=497.80(10) pm, b=960.40(10) pm, V=2.3799(12)×108 pm3, z=2. The results of the Raman spectroscopy of AgAF6 support the obtained structures. The structures are discussed by comparing with that of AgPF6 and AgAsF6 which have recently been determined in a series of our study.  相似文献   

7.
Microdifferential thermal analysis (μ-DTA), X-ray diffraction (XRD) and infrared (IR) spectroscopy were used for the first time to investigate the liquidus and solidus relations in the KPO3–Y(PO3)3 system. The only compound observed within the system was KY(PO3)4 melting incongruently at 1033 K. An eutectic appears at 13.5 mol% Y(PO3)3 at 935 K, the peritectic occurs at 1033 K and the phase transition for potassium polyphosphate KPO3 was observed at 725 K. Three monoclinic allotropic phases of the single crystals were obtained. KY(PO3)4 polyphosphate has the P21 space group with lattice parameters: a=7.183(4) Å, b=8.351(6) Å, c=7.983(3) Å, β=91.75(3)° and Z=2 is isostructural with KNd(PO3)4. The second allotropic form of KY(PO3)4 belongs to the P21/n space group with lattice parameters: a=10.835(3) Å, b=9.003(2) Å, c=10.314(1) Å, β=106.09(7)° and Z=4 and is isostructural with TlNd(PO3)4. The IR absorption spectra of the two forms show a chain polyphosphates structure. The last modification of KYP4O12 crystallizes in the C2/c space group with lattice parameters: a=7.825(3) Å, b=12.537(4) Å, c=10.584(2) Å, β=110.22(7)° and Z=4 is isostructural with RbNdP4O12 and contains cyclic anions. The methods of chemical preparations, the determination of crystallographic data and IR spectra for these compounds are reported.  相似文献   

8.
The crystal structures of propionaldehyde complex (RS,SR)-(η5-C5H5)Re(NO)(PPh3)(η2-O=CHCH2CH3)]+ PF6 (1b+ PF6s−; monoclinic, P21/c (No. 14), a = 10.166 (1) Å, b = 18.316(1) Å, c = 14.872(2) Å, β = 100.51(1)°, Z = 4) and butyraldehyde complex (RS,SR)-[(η5-C5H5)Re(NO)(PPh3)(η2-O=CHCH2CH2CH3)]+ PF6 (1c+PF6; monoclinic, P21/a (No. 14), a = 14.851(1) Å, b = 18.623(3) Å, c = 10.026(2) Å, β = 102.95(1)°, Z = 4) have been determined at 22°C and −125°C, respectively. These exhibit C O bond lengths (1.35(1), 1.338(5) Å) that are intermediate between those of propionaldehyde (1.209(4) Å) and 1-propanol (1.41 Å). Other geometric features are analyzed. Reaction of [(η5-C5H5)Re(NO)(PPh3)(ClCH2Cl)]+ BF4 and pivalaldehyde gives [(η5-C5H5)Re(NO)(PPh3)(η2-O=CHC(CH3)3)]+BF4 (81%), the spectroscopic properties of which establish a π C O binding mode.  相似文献   

9.
Irena Szczygiel   《Thermochimica Acta》2001,370(1-2):125-128
The phase diagram of the system CePO4–K3PO4 has been determined based on investigations by differential thermal analysis, X-ray powder diffraction, IR spectroscopy and optical microscopy. The system contains only one intermediate compound K3Ce(PO4)2, which melts incongruently at (1500±20)°C. This compound is stable down to room temperature and exhibits a polymorphic transition at 1180°C. It was confirmed that the low-temperature form β-K3Ce(PO4)2 crystallizes in a monoclinic system, space group P21/m with unit cell parameters a=9.579 (5), b=5.634 (6), c=7.468 (5) Å; =γ=90°, β=90.81 (3)°; V=403.083 Å3.  相似文献   

10.
Nest-shaped cluster [MoOICu3S3(2,2′-bipy)2] (1) was synthesized by the treatment of (NH4)2MoS4, CuI, (n-Bu)4NI, and 2,2′-bipyridine (2,2′-bipy) through a solid-state reaction. It crystallizes in monoclinic space group P21/n, a=9.591(2) Å, b=14.820(3) Å, c=17.951(4) Å, β=91.98(2)°, V=2549.9(10) Å3, and Z=4. The nest-shaped cluster was obtained for the first time with a neutral skeleton containing 2,2′-bipy ligand. The non-linear optical (NLO) property of [MoOICu3S3(2,2′-bipy)2] in DMF solution was measured by using a Z-scan technique with 15 ns and 532 nm laser pulses. The cluster has large third-order NLO absorption and the third-order NLO refraction, its 2 and n2 values were calculated as 6.2×10−10 and −3.8×10−17 m2 W−1 in a 3.7×10−4 M DMF solution.  相似文献   

11.
A new 1.75 μm infrared emission transition of Y2O3:Er3+ is assigned to the 4S3/2 → 4I9/2 transition of Er3+ ions situated at the C2 sites of cubic RE2O3 (RE = Y, Gd, Lu). The intensities of features in the 1.54 μm 4I15/24I13/2 absorption transition due to Er3+ at S6 and C2 sites are consistent with the site occupation ratio and the relative magnetic dipole–electric dipole intensity contributions of Er3+ at the different sites. The 1.54 μm emission lines are predominantly from Er3+ ions at C2 sites. The different behaviours of the emission intensities 1.75 and 1.54 μm groups with change in Er3+ dopant ion concentration, preparation technique, Yb3+ co-doping, temperature change and different excitation line are rationalized.  相似文献   

12.
The syntheses and structural determination of NdIII and ErIII complexes with nitrilotriacetic acid (nta) were reported in this paper. Their crystal and molecular structures and compositions were determined by single-crystal X-ray structure analyses and elemental analyses, respectively. The crystal of K3[NdIII(nta)2(H2O)]·6H2O complex belongs to monoclinic crystal system and C2/c space group. The crystal data are as follows: a=1.5490(11) nm, b=1.3028(9) nm, c=2.6237(18) nm, β=96.803(10)°, V=5.257(6) nm3, Z=8, M=763.89, Dc=1.930 g cm−3, μ=2.535 mm−1 and F(000)=3048. The final R1 and wR1 are 0.0390 and 0.0703 for 4501 (I>2σ(I)) unique reflections, R2 and wR2 are 0.0758 and 0.0783 for all 10474 reflections, respectively. The NdIIIN2O7 part in the [NdIII(nta)2(H2O)]3− complex anion has a pseudo-monocapped square antiprismatic nine-coordinate structure in which the eight coordinate atoms (two N and six O) are from the two nta ligands and a water molecule coordinate to the central NdIII ion directly. The crystal of the K3[ErIII(nta)2(H2O)]·5H2O complex also belongs to monoclinic crystal system and C2/c space group. The crystal data are as follows: a=1.5343(5) nm, b=1.2880(4) nm, c=2.6154(8) nm, b=96.033(5)°, V=5.140(3) nm3, Z=8, M=768.89, Dc=1.987 g cm−3, μ=3.833 mm−1 and F(000)=3032. The final R1 and wR1 are 0.0321 and 0.0671 for 4445 (I>2σ(I)) unique reflections, R2 and wR2 are 0.0432 and 0.0699 for all 10207 reflections, respectively. The ErIIIN2O7 part in the [ErIII(nta)2(H2O)]3− complex anion has the same structure as NdIIIN2O7 part in which the eight coordinate atoms (two N and six O) are from the two nta ligands and a water molecule coordinate to the central NdIII ion directly.  相似文献   

13.
The oxidation of Cp2NbCl2 with pure WF6 in SO2 solution yielded the cationic metallocene species [Cp2NbCl2]+[WF6] essentially in quantitative yield. The same reaction carried out in the presence of either equimolar amounts or a two-fold excess of HCN led to the preparation of the new niobocenium salt [Cp2NbCl2]4+[WF6]2− which was studied by single crystal X-ray diffraction. This compound represents the first example of a structurally characterized metallocene-WF6 complex, and crystallizes in the tetragonal system: space group, P41212(No. 92), a = 11.083(8) Å, c = 48.285 (9) Å; Z = 8; R = 0.0759, RW = 0.0841. ab]Die Oxidation von Cp2NbCl2 mit reinem WF6 führt in SO2-Lösung zur Synthese von [Cp2NbCl2 ]+[WF6] in nahezu quantitativer Ausbeute. Die analoge Reaktion führt unter Anwesenheit der äquimolaren Menge oder eines zweifachen Überschusses an HCN zur Ausbildung des Niobocenium-Komplexsalzes [Cp2NbCl2]4+ [WF6]2[WCl6]2−, von dem eine Röntgenstrukturanalyse angefertigt wurde. Diese Verbindung repräsentiert den ersten structurell charakterisierten Vertreter eines Metallocen-WF6-Komplexes und kristallisiert im tetragonalen System: Raumgruppe P41212 (Nr. 92), a = 11.083(8) Å, c = 48.285(9) Å; Z = 8; R = 0.0759, RW = 0.0841. kw]Niobium; X-ray diffraction; Oxidation; Metallocenes  相似文献   

14.
A novel three-dimensional (3D) mixed-valence iron coordination polymer [Fe2IIIFeIIO2(IN)2(ox)] (IN=isonicotinate, OX=oxalate) (1) has been hydrothermally synthesized by using two different anionic ligands and characterized by elemental analysis, IR spectrum, electron spin resonance (ESR), X-ray photoelectron spectrum (XPS), thermogravimetric analysis (TGA) and single crystal X-ray diffraction. Compound 1 crystallizes in the monoclinic, space group P2(1)/c with a=5.8774(7) Å, b=18.528(2) Å, c=7.7117(9) Å, V=817.69(17) Å3, Z=2, and R1=0.0321 (wR2=0.0777). The Fe(II) and Fe(III) centers in 1 both exhibit a distorted octahedral coordination geometry and are bridged by the IN and oxalate groups into a covalently bonded 3D metal–organic network. TGA showed that the 3D network possesses a good stability up to 291 °C.  相似文献   

15.
The hydrothermal reactions of vanadium oxide starting materials with divalent transition metal cations in the presence of nitrogen donor chelating ligands yield the bimetallic cluster complexes with the formulae [{Cd(phen2)2V4O12]·5H2O (1) and [Ni(phen)3]2[V4O12]·17.5H2O (2). Crystal data: C48H52Cd2N8O22V4 (1), triclinic. a=10.3366(10), b=11.320(3), c=13.268(3) Å, =103.888(17)°, β=92.256(15)°, γ=107.444(14)°, Z=1; C72H131N12Ni2O29.5V4 (2), triclinic. a=12.305(3), b=13.172(6), c=15.133(4), =79.05(3)°, β=76.09(2)°, γ=74.66(3)°, Z=1. Data were collected on a Siemens P4 four-circle diffractometer at 293 K in the range 1.59° <θ<26.02° and 2.01°<θ<25.01° using the ω-scan technique, respectively. The structure of 1 consists of a [V4O12]4− cluster covalently attached to two {Cd(phen)2}2+ fragments, in which the [V4O12]4− cluster adopts a chair-like configuration. In the structure of 2, the [V4O12]4− cluster is isolated. And the complex formed a layer structure via hydrogen bonds between the [V4O12]4− unit and crystallization water molecules.  相似文献   

16.
Two nickel (imidazole) complexes, Ni(im)6Cl2·4H2O (1) and Ni(im)6(NO3)2 (2) (im=imidazole) have been synthesized and characterized by elemental analysis, IR, UV, TG and single crystal X-ray diffraction. 1 crystallizes in the triclinic space group P-1 with a=8.800(6) Å, b=9.081(6) Å, c=10.565(7) Å, =75.058(9)°, β=83.143(8)°, γ=61.722(8)°, V=718.3(8) Å3, Z=1 and R1 (wR2)=0.0469 (0.1497). 2 crystallizes in the trigonal space group R-3 with a=12.370(6) Å, b=12.370(6) Å, c=14.782(14) Å, =90.00°, β=90.00°, γ=120.00°, V=1959(2) Å3, Z=3 and R1 (wR2)=0.0358 (0.0955). 1 and 2 exhibit different supramolecular network due to their different counter anions and different hydrogen bonding connection. In compound 1, [Ni(im)6]2+ cation and counter anions Cl alternatively array in an ABAB fashion via N–HCl hydrogen bonding. In compound 2, the plane of each NO32− is almost parallel and each NO32− connect three different [Ni(im)6]2+ cations via N–HO hydrogen bonding.  相似文献   

17.
Structures of the following compounds have been obtained: N-(2-pyridyl)-N′-2-thiomethoxyphenylthiourea, PyTu2SMe, monoclinic, P21/c, a=11.905(3), b=4.7660(8), c=23,532(6) Å, β=95.993(8)°, V=1327.9(5) Å3 and Z=4; N-2-(3-picolyl)-N′-2-thiomethoxyphenyl-thiourea, 3PicTu2SeMe, monoclinic, C2/c, a=22.870(5), b=7.564(1), c=16.941(4) Å, β=98.300(6)°, V=2899.9(9) Å3 and Z=8; N-2-(4-picolyl)-N′-2-thiomethoxyphenylthiourea, 4PicTu2SMe, monoclinic P21/a, a=9.44(5), b=18.18(7), c=8.376(12) Å, β=91.62(5)°, V=1437(1) Å3 and Z=4; N-2-(5-picolyl)-N′-2-thiomethoxyphenylthiourea, 5PicTu2SMe, monoclinic, C2/c, a=21.807(2), b=7.5940(9), c=17.500(2) Å, β=93.267(6)°, V=2893.3(5) Å3 and Z=8; N-2-(6-picolyl)-N′-2-thiomethoxyphenylthiourea, 6PicTu2SMe, monoclinic, P21/c, a=8.499(4), b=7.819(2), c=22.291(8) Å, β=90.73(3)°, V=1481.2(9) Å3 and Z=4 and N-2-(4,6-lutidyl)-N′-2-thiomethoxyphenyl-thiourea, 4,6LutTu2SMe, monoclinic, P21/c, a=11.621(1), b=9.324(1), c=14.604(1) Å, β=96.378(4)°, V=1572.4(2) Å3 and Z=4. Comparisons with other N-2-pyridyl-N′-arylthioureas having substituents in the 2-position of the aryl ring are included.  相似文献   

18.
A new uranium (III) fluoro-complex of the formula K5Li2UF10 has been synthesised and characterised by X-ray powder diffraction and electronic absorption spectra measurements. The compound crystallises in the orthorhombic system, space group Pnma, with a = 20.723, b = 7.809, c = 6.932 Å, V = 1121.89 Å3, Z = 4 and is isostructural with its K5Li2NdF10 and K5Li2LaF10 analogous. The absorption spectrum of a polycrystalline sample of K5Li2UF10 was recorded at 4.2 K in the 3500–45,000 cm−1 range and is discussed. The observed crystal-field levels were assigned and fitted to parameters of the simplified angular overlap model (AOM) and next to those of a semi-empirical Hamiltonian, which was representing the combined atomic and one-electron crystal-field interactions. The starting values of the AOM parameters were obtained from ab initio calculations. The analysis of the spectra enabled the assignment of 71 crystal-field levels of U3+ with a relatively small r.m.s. deviation of 37 cm−1. The total splitting of 714 cm−1 was calculated for the 4I9/2 ground multiplet.  相似文献   

19.
Triphenyltelluronium hexachloroplatinate (1), hexachloroiridate (2), tetrachloroaurate (3), and tetrachloroplatinate (4) were prepared from Ph3TeCl and potassium salts of the corresponding anions. Upon recrystallization of 4 from concentrated nitric acid, K2[PtCl6] and (Ph3Te)(NO3)·HNO3 (5) were obtained. The crystal structures of 1–3 and 5 are reported. Compounds 1 and 2 are isostructural. They are triclinic, P , Z=2 (the asymmetric unit contains two formula units). Compound 1: a=10.7535(2), b=17.2060(1), c=21.4700(3) Å, =78.9731(7), β=77.8650(4), γ=78.8369(4)°. Compound 2: a=10.7484(2), b=17.1955(2), c=21.4744(2) Å, =78.834(1), β=77.649(1), γ=78.781(1)°. Compound 3 is monoclinic, P21/c, Z=4, a=8.432(2), b=14.037(3), c=17.306(3) Å, β=93.70(3)°. Compound 5 is monoclinic. P21/n, Z=4, a=9.572(2), b=14.050(3), c=13.556(3) Å, β=90.76(3)°. The primary bonding in the Ph3Te+ cation in each salt is a trigonal AX3E pyramid with Te---C bond lengths in the range 2.095(8)–2.14(2) Å and the bond angles 94.1(6)–100.9(5)°. The weak TeCl (1–3) and TeO (5) secondary interactions expand the coordination sphere. In 1 and 2 the cation shows a trigonal bipyramidal AX3YE coordination with one primary Te---C bond and the shortest secondary TeCl contact in axial positions and the two other Te---C bonds and the lone-pair in equatorial positions. The cation in 3 shows a distorted octahedral AX3Y3E environment and that in 5 is a more complex AX3Y3Y′2 arrangement. In both latter salts the structure is a complicated three-dimensional network of cations and anions.  相似文献   

20.
A coordination polymer was synthesized by the reaction of CoCl2 with 1,2,4-triazole-5-one (TO) and charaterized by means of IR and TG–DTG. Single-crystal structure analysis showed that the complex crystallized in the monoclinic space group C2/c: a = 23.105(9) Å, b = 3.5683(2) Å, c = 13.589(6) Å,  = 90°, β = 124.038(4)°, γ = 90°, V = 928.4(7) Å3, Z = 4. The standard molar enthalpy of formation of the complex was determined to be (−1034.28 ± 0.95) kJ mol−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号