首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Quantum calculations of the ground vibrational state tunneling splitting of H-atom and D-atom transfer in malonaldehyde are performed on a full-dimensional ab initio potential energy surface (PES). The PES is a fit to 11 147 near basis-set-limit frozen-core CCSD(T) electronic energies. This surface properly describes the invariance of the potential with respect to all permutations of identical atoms. The saddle-point barrier for the H-atom transfer on the PES is 4.1 kcalmol, in excellent agreement with the reported ab initio value. Model one-dimensional and "exact" full-dimensional calculations of the splitting for H- and D-atom transfer are done using this PES. The tunneling splittings in full dimensionality are calculated using the unbiased "fixed-node" diffusion Monte Carlo (DMC) method in Cartesian and saddle-point normal coordinates. The ground-state tunneling splitting is found to be 21.6 cm(-1) in Cartesian coordinates and 22.6 cm(-1) in normal coordinates, with an uncertainty of 2-3 cm(-1). This splitting is also calculated based on a model which makes use of the exact single-well zero-point energy (ZPE) obtained with the MULTIMODE code and DMC ZPE and this calculation gives a tunneling splitting of 21-22 cm(-1). The corresponding computed splittings for the D-atom transfer are 3.0, 3.1, and 2-3 cm(-1). These calculated tunneling splittings agree with each other to within less than the standard uncertainties obtained with the DMC method used, which are between 2 and 3 cm(-1), and agree well with the experimental values of 21.6 and 2.9 cm(-1) for the H and D transfer, respectively.  相似文献   

2.
Tunneling splittings in the water dimer have been determined by the semiclassical WKB method, based on pathways characterized at the computational level of second-order M?ller-Plesset (MP2) theory with basis sets of aug-cc-pVTZ quality. This calculation takes into account all three acceptor tunneling, donor-acceptor interchange, and bifurcation tunneling rearrangements of the water dimer. The tunneling splittings were evaluated as 7.73 cm(-1) (large splitting) and 0.42 cm(-1) (small splitting), which are in good agreement with the corresponding experimental values of 11.18 cm(-1) and 0.70 cm(-1), respectively.  相似文献   

3.
The first high resolution spectroscopic data for jet cooled H2DO+ are reported, specifically via infrared laser direct absorption in the OH stretching region with a slit supersonic jet discharge source. Transitions sampling upper (0-) and lower (0+) tunneling states for both symmetric (nu1+ <-- 0+, nu1- <-- 0-, and nu1- <-- 0+) and antisymmetric (nu3+ <-- 0+ and nu3- <-- 0-) OH stretching bands are observed, where +/- refers to wave function reflection symmetry with respect to the planar umbrella mode transition state. The spectra can be well fitted to a Watson asymmetric top Hamiltonian, revealing band origins and rotational constants for benchmark comparison with high-level ab initio theory. Of particular importance are detection and assignment of the relatively weak band (nu1- <-- 0+) that crosses the inversion tunneling gap, which is optically forbidden in H3O+ or D3O+, but weakly allowed in H2DO+ by lowering of the tunneling transition state symmetry from D(3h) to C(2v). In conjunction with other H2DO+ bands, this permits determination of the tunneling splittings to within spectroscopic precision for each of the ground [40.518(10) cm(-1)], nu1 = 1 [32.666(6) cm(-1)], and nu3 = 1 [25.399(11) cm(-1)] states. A one-dimensional zero-point energy corrected potential along the tunneling coordinate is constructed from high-level ab initio CCSD(T) calculations (AVnZ, n = 3,4,5) and extrapolated to the complete basis set limit to extract tunneling splittings via a vibrationally adiabatic treatment. Perturbative scaling of the potential to match splittings for all four isotopomers permits an experimental estimate of DeltaV0 = 652.9(6) cm(-1) for the tunneling barrier, in good agreement with full six-dimensional ab initio results of Rajamaki, Miani, and Halonen (RMH) [J. Chem. Phys. 118, 10929 (2003)]. (DeltaV0 (RMH) = 650 cm(-1)). The 30%-50% decrease in tunneling splitting observed upon nu1 and nu3 vibrational excitations arises from an increase in OH stretch frequencies at the planar transition state, highlighting the transition between sp2 and sp3 hybridizations of the OHD bonds as a function of inversion bending angle.  相似文献   

4.
In this work we present an all-Cartesian reaction surface approach, where the large amplitude coordinates span the so-called reaction plane, that is, the unique plane defined by the two minima and the saddle-point structure of an isomerization reaction. Orthogonal modes are treated within harmonic approximation which gives the total Hamiltonian an almost separable form that is suitable for multidimensional quantum dynamics calculations. The reaction plane Hamiltonian is constructed for the H-atom transfer in tropolone as an example for a system with an intramolecular O...H-O hydrogen bond. We find ground-state tunneling splittings of 3.5 and 0.16 cm(-1) for the normal and deuterated species, respectively. We calculated infrared-absorption spectra for a four-dimensional model focusing on the low-frequency region. Here, we identify a reaction mode which is closely connected to the tautomerization that is reflected in the increase of tunneling splitting to 18 cm(-1) upon excitation.  相似文献   

5.
Carboxylic acid dimers in gas phase reveal ground-state tunneling splittings due to a double proton transfer between the two subunits. In this study we apply a recently developed accurate semiclassical method to determine the ground-state tunneling splittings of eight different carboxylic acid derivative dimers (formic acid, benzoic acid, carbamic acid, fluoro formic acid, carbonic acid, glyoxylic acid, acrylic acid, and N,N-dimethyl carbamic acid) and their fully deuterated analogs. The calculated splittings range from 5.3e-4 to 0.13 cm(-1) (for the deuterated species from 2.8e-7 to 3.3e-4 cm(-1)), thus indicating a strong substituent dependence of the splitting, which varies by more than two orders of magnitude. One reason for differences in the splittings could be addressed to different barriers heights, which vary from 6.3 to 8.8 kcal/mol, due to different mesomeric stabilization of the various transition states. The calculated splittings were compared to available experimental data and good agreement was found. A correlation could be found between the tunneling splitting and the energy barrier of the double proton transfer, as the splitting increases with increased strength of the hydrogen bonds. From this correlation an empirical formula was derived, which allows the prediction of the ground-state tunneling splitting of carboxylic acid dimers at a very low cost and the tunneling splittings for parahalogen substituted benzoic acid dimers is predicted.  相似文献   

6.
The Fourier transform infrared spectrum of tropolone(OH) vapor in the 1175-1700 cm(-1) region is reported at 0.0025 and 0.10 cm(-1) spectral resolutions. The 12 vibrational fundamentals in this region of rapidly rising vibrational state density are dominated by mixtures of the CC, CO, CCH, and COH internal coordinates. Estimates based on the measurement of sharp Q branch peaks are reported for 11 of the spectral doublet component separations DS(v) = |Delta(v) +/- Delta(0)|. Delta(0) = 0.974 cm(-1) is the known zero-point splitting, and three a(1) modes show tunneling splittings Delta(v) approximately Delta(0), four b(2) modes show splittings Delta(v) approximately 0.90Delta(0), and the remaining four modes show splittings Delta(v) falling 5-14% from Delta(0.) Significantly, the splitting for the nominal COH bending mode nu(8) (a(1)) is small, that is, 10% from Delta(0). Many of the vibrational excited states demonstrate strong anharmonic behavior, but there are only mild perturbations on the tautomerization mechanism driving Delta(0). The data suggest, especially for the higher frequency a(1) fundamentals, the onset of selective intramolecular vibrational energy redistribution processes that are fast on the time scale of the tautomerization process. These appear to delocalize and smooth out the topographical modifications of the zero-point potential energy surface that are anticipated to follow absorption of the nu(v) photon. Further, the spectra show the propensity for the Delta(v) splittings of b(2) and other complex vibrations to be damped relative to Delta(0).  相似文献   

7.
We report the first rotationally resolved spectroscopic studies on PH3+(X2A2") using zero kinetic energy photoelectron spectroscopy and coherent VUV radiation. The spectra about 8000 cm(-1) above the ground vibrational state of PH3+(X2A2") have been recorded. We observed the vibrational energy level splittings of PH3+(X2A2") due to the tunneling effect in the inversion (symmetric bending) vibration (nu2+). The energy splitting for the first inversion vibrational state (0+/0-) is 5.8 cm(-1). The inversion vibrational energy levels, rotational constants, and adiabatic ionization energies (IEs) for nu2+ = 0-16 have been determined. The bond angles between the neighboring P-H bonds and the P-H bond lengths are also obtained using the experimentally determined rotational constants. With the increasing of the inversion vibrational excitations (nu2+), the bond lengths (P-H) increase a little and the bond angles (H-P-H) decrease a lot. The inversion vibrational energy levels have also been calculated by using one dimensional potential model and the results are in good agreement with the experimental data for the first several vibrational levels. In addition to inversion vibration, we also observed firstly the other two vibrational modes: the symmetric P-H stretching vibration (nu1+) and the degenerate bending vibration (nu4+). The fundamental frequencies for nu1+ and nu4+ are 2461.6 (+/-2) and 1043.9 (+/-2) cm(-1), respectively. The first IE for PH3 was determined as 79670.9 (+/-1) cm(-1).  相似文献   

8.
There has been some controversy concerning the assignment of measured tunneling splittings for the formic acid dimer in the vibrational ground state and the asymmetric CO-stretching excited state. The discussion is intimately related to the question whether the fundamental excitation of the CO-vibration promotes or hinders tunneling. Here we will address this issue on the basis of a five-dimensional reaction space Hamiltonian which includes three large amplitude coordinates as well as two harmonic modes whose linear superposition reproduces the asymmetric CO-vibrational mode. Within density functional theory using the B3LYP functional together with a 6-311++G(3df,3pd) basis set we obtain a ground state tunneling splitting which is about 2.4 larger than the one for the CO-stretching excited state.  相似文献   

9.
Tunneling splittings in the water trimer have been determined by the semiclassical WKB method, based on pathways characterized at the computational level of second-order M?ller-Plesset theory with basis sets of aug-cc-pVTZ quality. This calculation takes into account the single-flip and bifurcation tunneling rearrangements of the water trimer. The predicted splittings are 37.93 cm(-1) for the flip and 6.50x10(-3) cm(-1) for bifurcation, which agree quite well with the corresponding experimental values of 43.52 cm(-1) and 9.63x10(-3) cm(-1).  相似文献   

10.
Quantum dynamics calculations of the ground state tunneling splitting and of the zero point energy of malonaldehyde on the full dimensional potential energy surface proposed by Yagi et al. [J. Chem. Phys. 1154, 10647 (2001)] are reported. The exact diffusion Monte Carlo and the projection operator imaginary time spectral evolution methods are used to compute accurate benchmark results for this 21-dimensional ab initio potential energy surface. A tunneling splitting of 25.7+/-0.3 cm-1 is obtained, and the vibrational ground state energy is found to be 15 122+/-4 cm-1. Isotopic substitution of the tunneling hydrogen modifies the tunneling splitting down to 3.21+/-0.09 cm-1 and the vibrational ground state energy to 14 385+/-2 cm-1. The computed tunneling splittings are slightly higher than the experimental values as expected from the potential energy surface which slightly underestimates the barrier height, and they are slightly lower than the results from the instanton theory obtained using the same potential energy surface.  相似文献   

11.
Full-dimensional (multilayer) multi-configurational time-dependent Hartree calculations studying the intramolecular proton transfer in malonaldehyde based on a recent potential energy surface (PES) [Wang et al., J. Chem. Phys. 128, 224314 (2008)] are presented. The most accurate calculations yield a ground state tunneling splitting of 23.8 cm(-1) and a zero point energy of 14,678 cm(-1). Extensive convergence tests indicate an error margin of the quantum dynamics calculations for the tunneling splitting of about 0.2 cm(-1). These results are to be compared with the experimental value of the tunneling splitting of 21.58 cm(-1) and results of Monte Carlo calculations of Wang et al. on the same PES which yielded a zero point energy of 14,677.9 cm(-1) with statistical errors of 2-3 cm(-1) and a tunneling splitting of 21.6 cm(-1). The present data includes contributions resulting from the vibrational angular momenta to the tunneling splitting and the zero point energy of 0.2 cm(-1) and 2.4 cm(-1), respectively, which have been computed using a perturbative approach.  相似文献   

12.
Large-amplitude tunneling in vinyl radical over a C2v planar transition state involves CCH bending excitation coupled to all other internal coordinates, resulting in a significant dependence of barrier height and shape on vibrational degrees of freedom at the zero-point level. An ab initio potential surface for vinyl radical has been calculated at the CCSD(T) level (AVnZ; n=2, 3, 4, 5) for vibrationally adiabatic 1D motion along the planar CCH bending tunneling coordinate, extrapolated to the complete basis set (CBS) limit and corrected for anharmonic zero-point effects. The polyatomic reduced moment of inertia is calculated explicitly as a function of tunneling coordinate, with eigenvalues and tunneling splittings obtained from numerical solution of the resulting 1D Schr?dinger equation. Linear scaling of the CBS potential to match predicted and observed tunneling splittings empirically yields an adiabatic barrier height of DeltaEadiab=1696(20) cm(-1) which, when corrected for zero-point energy contributions, translates into an effective barrier of DeltaEeff=1602(20) cm(-1) consistent with estimates (DeltaE=1580(100) cm(-1)) by Tanaka and coworkers [J. Chem. Phys., 2004, 120, 3604-3618]. These zero-point-corrected potential surfaces are used to predict tunneling dynamics in vibrationally excited states of vinyl radical, providing strong support for previous jet-cooled high-resolution infrared studies [Dong et al., J. Phys. Chem. A, 2006, 110, 3059-3070] in the symmetric CH2 stretch mode.  相似文献   

13.
The S(1)/S(2) state exciton splittings of symmetric doubly hydrogen-bonded gas-phase dimers provide spectroscopic benchmarks for the excited-state electronic couplings between UV chromophores. These have important implications for electronic energy transfer in multichromophoric systems ranging from photosynthetic light-harvesting antennae to photosynthetic reaction centers, conjugated polymers, molecular crystals, and nucleic acids. We provide laser spectroscopic data on the S(1)/S(2) excitonic splitting Δ(exp) of the doubly H-bonded o-cyanophenol (oCP) dimer and compare to the splittings of the dimers of (2-aminopyridine)(2), [(2AP)(2)], (2-pyridone)(2), [(2PY)(2)], (benzoic acid)(2), [(BZA)(2)], and (benzonitrile)(2), [(BN)(2)]. The experimental S(1)/S(2) excitonic splittings are Δ(exp) = 16.4 cm(-1) for (oCP)(2), 11.5 cm(-1) for (2AP)(2), 43.5 cm(-1) for (2PY)(2), and <1 cm(-1) for (BZA)(2). In contrast, the vertical S(1)/S(2) energy gaps Δ(calc) calculated by the approximate second-order coupled cluster (CC2) method for the same dimers are 10-40 times larger than the Δ(exp) values. The qualitative failure of this and other ab initio methods to reproduce the exciton splitting Δ(exp) arises from the Born-Oppenheimer (BO) approximation, which implicitly assumes the strong-coupling case and cannot be employed to evaluate excitonic splittings of systems that are in the weak-coupling limit. Given typical H-bond distances and oscillator strengths, the majority of H-bonded dimers lie in the weak-coupling limit. In this case, the monomer electronic-vibrational coupling upon electronic excitation must be accounted for; the excitonic splittings arise between the vibronic (and not the electronic) transitions. The discrepancy between the BO-based splittings Δ(calc) and the much smaller experimental Δ(exp) values is resolved by taking into account the quenching of the BO splitting by the intramolecular vibronic coupling in the monomer S(1) ← S(0) excitation. The vibrational quenching factors Γ for the five dimers (oCP)(2), (2AP)(2), (2AP)(2), (BN)(2), and (BZA)(2) lie in the range Γ = 0.03-0.2. The quenched excitonic splittings Γ[middle dot]Δ(calc) are found to be in very good agreement with the observed splittings Δ(exp). The vibrational quenching approach predicts reliable Δ(exp) values for the investigated dimers, confirms the importance of vibrational quenching of the electronic Davydov splittings, and provides a sound basis for predicting realistic exciton splittings in multichromophoric systems.  相似文献   

14.
Solid-state geometry optimizations and corresponding normal-mode analysis of the widely used energetic material cyclotrimethylenetrinitramine (RDX) were performed using density functional theory with both the generalized gradient approximation (BLYP and BP functionals) and the local density approximation (PWC and VWN functionals). The structural results were found to be in good agreement with experimental neutron diffraction data and previously reported calculations based on the isolated-molecule approximation. The vibrational inelastic neutron scattering (INS) spectrum of polycrystalline RDX was measured and compared with simulated INS constructed from the solid-state calculations. The vibrational frequencies calculated from the solid-state methods had average deviations of 10 cm(-1) or less, whereas previously published frequencies based on an isolated-molecule approximation had deviations of 65 cm(-1) or less, illustrating the importance of including crystalline forces. On the basis of the calculations and analysis, it was possible to assign the normal modes and symmetries, which agree well with previous assignments. Four possible "doorway modes" were found in the energy range defined by the lattice modes, which were all found to contain fundamental contributions from rotation of the nitro groups.  相似文献   

15.
Geometries, anharmonic vibrations, and torsion-wagging (TW) multiplets of hydrazine and its deuterated species are studied using high-level ab initio methods employing the second-order Mo?ller-Plesset perturbation theory (MP2) as well as the coupled cluster singles and doubles model including connected triple corrections, CCSD(T), in conjunction with extended basis sets containing diffuse and core functions. To describe the splitting patterns caused by tunneling in TW states, the 3D potential energy surface (PES) for the large-amplitude TW modes is constructed. Stationary points in the 3D PES, including equivalent local minima and saddle points are characterized. Using this 3D PES, a flexible Hamiltonian is built numerically and then employed to solve the vibrational problem for TW coupled motion. The calculated ground state r(av) structure is expected to be more reliable than the experimental one that has been determined using a simplified structural model. The calculated fundamental frequencies allowed resolution of the assignment problems discussed earlier in the literature. The determined energy barriers, including the contributions from the small-amplitude vibrations, to the tunneling of the symmetric and antisymmetric wagging mode of 1997 cm(-1) and 3454 cm(-1), respectively, are in reasonable agreement with the empirical estimates of 2072 cm(-1) and 3312 cm(-1), respectively [W. ?odyga et al. J. Mol. Spectrosc. 183, 374 (1997)]. However, the empirical torsion barrier of 934 cm(-1) appears to be overestimated. The ab initio calculations yield two torsion barriers: cis and trans of 744 cm(-1) and 2706 cm(-1), respectively. The multiplets of the excited torsion states are predicted from the refined 3D PES.  相似文献   

16.
The measured high resolution (deltaE/E approximately 2-3%) incoherent inelastic neutron scattering spectrum of ammonium fluoride is presented and discussed with reference to the available optical spectra. In addition, a full set of dispersion curves have been obtained from a new ab initio lattice dynamics calculation and these have been used to produce a rigorous interpretation of the spectrum. The librational modes of the ammonium ion occur at 560 cm(-1) and the anharmonicity in these modes is estimated to be 4%, about half that observed in the other ammonium halides. The reduction in anharmonicity is attributed to stronger hydrogen bonding and a deeper potential well. The calculations agree well with the observed spectrum apart from the librational modes which are shifted upwards by around 40 cm(-1) from the measured values. Dispersion and LO-TO splitting are important in this system with modes changing frequency by up to 135 cm(-1). The nature of the calculated LO-TO splitting in the optic mode region is indicative of a pseudo-cubic system confirming that the site symmetry of the ammonium ion is very close to T(d). Because of LO-TO splitting the ammonium ion asymmetric stretch, nu3, has components calculated to be at higher frequencies than those of the symmetric stretch, nu1, which contradicts the assignment scheme produced from optical data.  相似文献   

17.
This article presents a treatment scheme of the tunneling of hydrogen between two molecular centers (Cl…Cl). The purpose is to calculate the tunneling probabilities of hydrogen atom transfer from the initial (the proceeding complex) to the final-state energy minima (the succeeding complex) in two anharmonic vibrational states (0 → 0 and 1 → 1) in terms of the time-dependent perturbation theory expression and to see whether spectroscopic signatures of tunneling persist in the form of splittings of the vibrational modes. The analysis uses the realistic potential energy function calculated at the HF/6−31 + G** self-consistent-field basis-set level for the interaction between transferred hydrogen and its molecular skeleton (Cl…H…Cl). This potential energy surface is calibrated by comparing its properties with those from sf-POLCI and the LEPS potential-energy surfaces. The anharmonic vibrational state is characterized by the corrected vibrational energy levels and a set of linear combination coefficients obtained via perturbation theory. The tunneling probabilities for two transitions (0 → 0 and 1 → 1) were calculated and compared with those from Gamow's equation. Applicability of the time-dependent perturbation theory expression and Gamow's equation to the [Cl BOND H…Cl] system is discussed. The vibrational splitting energies are obtained, and a spectroscopic signature caused by tunneling is expected and should be observable. © 1996 John Wiley & Sons, Inc.  相似文献   

18.
Fourier transform infrared absorption spectra containing evidence for about two dozen spectral tunneling doublets are reported for gaseous tropolone(OH), tropolone (OD), and 18O,18O-tropolone(OH) in the 800 to 300 cm-1 spectral range. No FTIR absorption was detected in the 300-150 cm-1 range. The known zero-point (ZP) tunneling splitting values Delta0 = 0.974 cm-1 for tropolone(OH) (Tanaka et al.) and 0.051 cm-1 for tropolone(OD) (Keske et al.) allow vibrational state-specific tunneling splittings Deltav to be estimated for fundamentals including three with strong O...O stretching displacements [cf. for tropolone(OH) nu13(a1) = 435.22 cm-1 with HDelta13 = 1.71 cm-1 = 1.76 HDelta0, and for tropolone(OD) nu13(a1) = 429.65 cm-1 with DDelta13 = 0.32 cm-1 = 6.27 DDelta0]. The majority of Deltav splittings in the sub-800 cm-1 range are dilated relative to the isotopomer Delta0 values. The FTIR spectra demonstrate the presence of dynamic couplings and potential function anharmonicity in addition to revealing Deltav splittings and many OH/D and 18O/16O isotope effects. Approximate values are obtained for the ZP splittings 88Delta0 and 86Delta0 of the doubly and singly 18O-labeled isotopomers of tropolone(OH). The diverse values of the observed Deltav/Delta0 splitting ratios underscore the inherent multidimensionality and corner-cutting activities entering the state-specific tunneling processes of the tropolone tautomerization reaction.  相似文献   

19.
An instanton theory for finding both tunnel splittings and incoherent tunneling rates in two-dimensional potentials is presented. The exact two-dimensional extremal trajectory is numerically calculated, and then the prefactor is expressed via its stability parameter. The method does not require any specific form of the potential and permits one to describe the rate constant at temperatures ranging from that of the low-temperature plateau to the classical activated transitions. The symmetric double well and the metastable well coupled to vibration are studied as examples, and, for the latter case, the instanton results are compared with recent numerical complex scaling method data, showing excellent agreement. The method is applied to inter- and intramolecular hydrogen transfer reactions. It is shown that in the latter case (tunnel splitting in malonaldehyde and in hydrogenoxalate anion) the tunneling trajectory is far from both the cutting-corner straight line and from the minimum energy path.  相似文献   

20.
We report a new full-dimensional potential energy surface (PES) for the water dimer, based on fitting energies at roughly 30,000 configurations obtained with the coupled-cluster single and double, and perturbative treatment of triple excitations method using an augmented, correlation consistent, polarized triple zeta basis set. A global dipole moment surface based on Moller-Plesset perturbation theory results at these configurations is also reported. The PES is used in rigorous quantum calculations of intermolecular vibrational frequencies, tunneling splittings, and rotational constants for (H2O)2 and (D2O)2, using the rigid monomer approximation. Agreement with experiment is excellent and is at the highest level reported to date. The validity of this approximation is examined by comparing tunneling barriers within that model with those from fully relaxed calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号