首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Ab initio computational studies were carried out in order to explore the possible mechanisms of quenching of O(2)(a (1)Delta(g)) by O(2)(X (3)Sigma(g) (-)): the self-quenching of O(2)(a (1)Delta(g)) and other energy-transfer processes involving two O(2) molecules. All eighteen states arising from two O(2) molecules in the X (3)Sigma(g) (-), a (1)Delta(g), and b (1)Sigma(g) (+) states are considered. After scans at the state-averaged complete active space self-consistent field method to identify possible regions of crossing between states belonging to different asymptotes, complete active state second-order perturbation theory high-symmetry optimization and low-symmetry scans established that four different minima on the seams of crossing (MSXs), arising between the a+a manifold and the X+b manifold and responsible for self-quenching: O(2)(a (1)Delta(g))+O(2)(a (1)Delta(g))-->O(2)(X (3)Sigma(g) (-))+O(2)(b (1)Sigma(g) (+)), have coplanar C(2h) or C(2v) symmetries and are only 0.45 eV barrier relative to the a+a asymptote and energetically easily accessible. The rate constant for this process was estimated based on the Landau-Zener formalism. The MSXs for quenching of O(2)(a (1)Delta(g)) by the ground state O(2)(X (3)Sigma(g) (-)):O(2)(a (1)Delta(g))+O(2)(X (3)Sigma(g) (-))-->O(2)(X (3)Sigma(g) (-))+O(2)(X (3)Sigma(g) (-)) require higher energies and the process is not likely to be important.  相似文献   

3.
A reduced dimensionality model is used to study the relaxation of highly vibrationally excited O(2)(X (3)Sigma(g) (-),v>/=20) in collisions with O(2)(X (3)Sigma(g) (-),v=0). Spin-orbit coupled potential energy surfaces are employed to incorporate the vibrational-to-electronic energy transfer mechanism involving the O(2)(a (1)Delta(g)) and O(2)(b (1)Sigma(g) (+)) excited states. The transition probabilities obtained show a sharp increase for v>/=26 providing the first direct evidence of the important role played by the electronic energy transfer processes in the depletion of O(2)(X (3)Sigma(g) (-),v>/=26).  相似文献   

4.
Five-dimensional nonadiabatic quantum dynamics studies have been carried out on two new potential energy surfaces of S(2)((1)A(')) and T(7)((3)A(")) states for the title oxygen molecules collision with coplanar configurations, along with the spin-orbit coupling between them. The ab initio calculations are based on complete active state second-order perturbation theory with the 6-31+G(d) basis set. The calculated spin-orbit induced transition probability as a function of collision energy is found to be very small for this energy pooling reaction. The rate constant obtained from a uniform J-shifting approach is compared with the existing theoretical and experimental data, and the spin-orbit effect is also discussed in this electronic energy-transfer process.  相似文献   

5.
Unusual bonding and electronic near degeneracies make the lowest-lying singlet states of the C2 molecule particularly challenging for electronic structure theory. Here we compare two alternative approaches to modeling bond-breaking reactions and excited states: sophisticated multireference configuration interaction and multireference perturbation theory methods, and a more "black box," single-reference approach, the completely renormalized coupled-cluster method. These approximate methods are assessed in light of their ability to reproduce the full configuration interaction potential energy curves for the X1Sigmag+, B1Deltag, and B' 1Sigmag+ states of C2, which are numerically exact solutions of the electronic Schrodinger equation within the space spanned by a 6-31G* basis set. Both the multireference methods and the completely renormalized coupled-cluster approach provide dramatic improvements over the standard single-reference methods. The multireference methods are nearly as reliable for this challenging test case as for simpler reactions which break only single bonds. The completely renormalized coupled-cluster approach has difficulty for large internuclear separations R in this case, but over the wide range of R=1.0-2.0 A, it compares favorably with the more complicated multireference methods.  相似文献   

6.
The reaction between energetic nitrogen atoms and oxygen molecules has received important attention in connection with nitric oxide chemistry in the lower thermosphere. We report time-independent quantum mechanical calculations of the N(4S)+O2-->NO+O reaction employing the X 2A' and a 4A' electronic potential energy surfaces of Sayos et al. [J. Chem. Phys. 117, 670 (2002)]. We confirm the production of highly vibrationally excited NO molecules, consistent with previous semiclassical and more recent time-dependent quantum wave packet studies. Calculations are carried out for total angular momentum quantum number J=0 and cross sections and rate coefficients are extracted using the J-shifting approximation. The results are in good agreement with available experimental and theoretical data.  相似文献   

7.
Vibrational relaxation of O2(X 3sigma(g)-, upsilon=2,3) by O2 molecules is studied via a two-laser approach. Laser radiation at 266 nm photodissociates ozone in a mixture of molecular oxygen and ozone. The photolysis step produces vibrationally excited O2(a 1delta(g)) that is rapidly converted to O2(X 3sigma(g)-, upsilon=2,3) in a near-resonant adiabatic electronic energy-transfer process involving collisions with ground-state O2. The output of a tunable 193-nm ArF laser monitors the temporal evolution of the O2(X 3sigma(g)-, upsilon=2,3) population via laser-induced fluorescence detected near 360 nm. The rate coefficients for the vibrational relaxation of O2(X 3sigma(g)-, upsilon=2,3) in collision with O2 are 2.0(-0.4)(+0.6) x 10(-13) cm3 s(-1) and (2.6+/-0.4) x 10(-13) cm3 s(-1), respectively. These rate coefficients agree well with other experimental work but are significantly larger than those produced by various semiclassical theoretical calculations.  相似文献   

8.
A quasiclassical trajectory study with the sixth-order explicit symplectic algorithm of the N(4S)+O2(X 3Sigmag-)-->NO(X 2Pi)+O(3P) atmospheric reaction has been performed by employing the new 2A' and 4A' potential-energy surfaces reported by Sayos et al. [J. Chem. Phys. 117, 670 (2002)]. For the translational temperature considered up to 10,000 K, the larger relative translational energy and the higher rovibrational levels of O2 molecule with respect to the previous works have been taken into account, and a clearer database about the character of the total reaction cross section has been presented in this work. The dependence of microscopic rate constants on the vibrational level of O2 molecule at T=3000, 5000, and 10,000 K has been exhibited, and we can see that the values of log10 k(T,v,J) vary almost linearly with the vibrational level of O2 molecule. The thermal rate constants at the translational temperature between 300 and 10,000 K have been evaluated and compared with the experimental and previous theoretical results. It is found that the thermal rate constants determined in this work have a better agreement with the experimental data and can provide a more valid theoretical reference at the translational temperature considered for the title reaction.  相似文献   

9.
The modern theoretical predictions on the LambdaSSigma nature of the ground state of CuCl2 have led to different answers, depending on the type (DFT-based or ab initio) and the quality of the electronic correlation treatment; for this reason the X2Pig - 2Sigmag+ transition energy has been predicted to range from -1856 to +5887 cm(-1). The physical problem at hand lies in the difficulty of accurately describing the orientation of the 3d hole on the central Cu2+(3d9)/Cu+(3d94s1) ion (in the field of both chlorine ions), which implies the need of the most sophisticated nondynamic and dynamic electronic correlation treatments. We report here ab initio benchmark calculations using especially developed basis sets to study, at the CASSCF + CASPT2 and CASSCF + ACPF levels, the transition energy as well as the corresponding equilibrium geometries. The spin-orbit (SO) effects of both atoms were included in a second step through the effective Hamiltonian formalism, using the calibrated SO effective potentials developed by the Stuttgart group. Without SO at the CASSCF + ACPF level, the ground state is X2Pig but the vertical transition energy to the 2Sigmag+ is only 99 cm(-1) at 3.95 a.u. The inclusion of the SO effects leads to a Omega = 1/2 (59% 2Pig,41% 2Sigmag+) ground state, in contradiction with the Omega experimental value of 3/2. In a last step we show that the SO effects (and therefore the final Omega ordering) are critically dependent on the LambdaSSigma electronic energies, so that it is not impossible that the Omega ordering is actually changed. For theoreticians interest in this matter is not purely academic, since many properties of organometallic complexes are linked to such delicate physical effects.  相似文献   

10.
We present global potential energy surfaces for the three lowest triplet states in O(3P)+H2O(X1A1) collisions and present results of classical dynamics calculations on the O(3P)+H2O(X1A1)-->OH(X2pi)+OH(X2pi) reaction using these surfaces. The surfaces are spline-based fits of approximately 20,000 fixed geometry ab initio calculations at the complete-active-space self-consistent field+second-order perturbation theory (CASSCF+MP2) level with a O(4s3p2d1f)/H(3s2p) one electron basis set. Computed rate constants compare well to measurements in the 1000-2500 K range using these surfaces. We also compute the total, rovibrationally resolved, and differential angular cross sections at fixed collision velocities from near threshold at approximately 4 km s(-1) (16.9 kcal mol(-1) collision energy) to 11 km s(-1) (122.5 kcal mol(-1) collision energy), and we compare these computed cross sections to available space-based and laboratory data. A major finding of the present work is that above approximately 40 kcal mol(-1) collision energy rovibrationally excited OH(X2pi) products are a significant and perhaps dominant contributor to the observed 1-5 micro spectral emission from O(3P)+H2O(X1A1) collisions. Another important result is that OH(X2pi) products are formed in two distinct rovibrational distributions. The "active" OH products are formed with the reagent O atom, and their rovibrational distributions are extremely hot. The remaining "spectator" OH is relatively rovibrationally cold. For the active OH, rotational energy is dominant at all collision velocities, but the opposite holds for the spectator OH. Summed over both OH products, below approximately 50 kcal mol(-1) collision energy, vibration dominates the OH internal energy, and above approximately 50 kcal mol(-1) rotation is greater than vibrational energy. As the collision energy increases, energy is diverted from vibration to mostly translational energy. We note that the present fitted surfaces can also be used to investigate direct collisional excitation of H2O(X1A1) by O(3P) and also OH(X2pi)+OH(X2pi) collisions.  相似文献   

11.
12.
Quantum scattering calculations are reported for the O(3P)+H2(v=0,1) reaction using chemically accurate potential energy surfaces of 3A' and 3A" symmetry. We present state-to-state reaction cross sections and rate coefficients as well as thermal rate coefficients for the title reaction using accurate quantum calculations. Our calculations yield reaction cross sections that are in quantitative accord with results of recent crossed molecular beam experiments. Comparisons with results obtained using the J-shifting calculations show that the J-shifting approximation is quite reliable for this system. Thermal rate coefficients from the exact calculations and the J-shifting approximation agree remarkably well with experimental results. Our calculations also reproduce the markedly different OH(v'=0)/OH(v'=1) branching in O(3P)+H2(v=1) reaction, observed in experiments that use different O(3P) atom sources. In particular, we show that the branching ratio is a strong function of the kinetic energy of the O(3P) atom.  相似文献   

13.
The recent demonstration of a discharge-driven oxygen-iodine laser has generated renewed interest in the kinetics of iodine interacting with electronically excited O2 and atomic O. Kinetic measurements that are of relevance to the laser have been carried out using 193 nm pulsed laser photolysis of N2O/I2/CO2 mixtures. Singlet oxygen was generated in this system by the reaction O(1D)+N2O-->O2(a1Deltag, X3Sigma-g)+N2. The fraction of electronically excited O2 produced by this channel was shown to be >0.9. The secondary photochemistry of the N2O/I2/CO2 system was characterized by monitoring the time histories of I(2P1/2), I2, IO, and O2(a). Kinetic modeling of these data was used to determine the rate constant for the deactivation of I(2P1/2) by O(3P) (k=(1.2+/-0.1)x10(-11) cm3 s(-1)). Quenching of I(2P1/2) by O(3P) is suppressed in the discharge-driven laser by using NO2 to scavenge the O atoms. The reaction O(3P)+NO2-->O2+NO is sufficiently exothermic for the production of O2(a), and it has been speculated that this channel may be significant in the laser excitation kinetics. Photolysis of NO2 was used to probe this reaction. O2(a) was not detected, and an upper bound of <0.1 for its production in the reaction of O(3P) or O(1D) with NO2 was established.  相似文献   

14.
We report a laboratory measurement of the rate coefficient for the collisional removal of O(2)(X(3)Sigma(g) (-),upsilon=1) by O((3)P) atoms. In the experiments, 266-nm laser light photodissociates ozone in a mixture of molecular oxygen and ozone. The photolysis step produces vibrationally excited O(2)(a(1)Delta(g)) that is rapidly converted to O(2)(X(3)Sigma(g) (-),upsilon=1-3) in a near-resonant electronic energy-transfer process with ground-state O(2). In parallel, a large amount of O((1)D) atoms is generated that promptly relaxes to O((3)P). Under the conditions of the experiments, only collisions with the photolytically produced O((3)P) atoms control the lifetime of O(2)(X(3)Sigma(g) (-),upsilon=1), because its removal by molecular oxygen at room temperature is extremely slow. Tunable 193-nm laser light monitors the temporal evolution of the O(2)(X(3)Sigma(g) (-),upsilon=1) population by detection of laser-induced fluorescence near 360 nm. The removal rate coefficient for O(2)(X(3)Sigma(g) (-),upsilon=1) by O((3)P) atoms is (3.2+/-1.0)x10(-12) cm(3) s(-1) (2sigma) at a temperature of 315+/-15 K (2sigma). This result is essential for the analysis and correct interpretation of the 6.3-mum H(2)O(nu(2)) band emission in the Earth's mesosphere and indicates that the deactivation of O(2)(X (3)Sigma(g) (-),upsilon=1) by O((3)P) atoms is significantly faster than the nominal values recently used in atmospheric models.  相似文献   

15.
Six new potential energy surfaces of four singlet states and two triplet states for the title oxygen molecule reaction along with the spin-orbit coupling among them have been constructed from the complete active space second-order perturbation theory with a 6-311+G(d) basis. Accurate integral cross sections are calculated with a full six-dimensional nonadiabatic time-dependent quantum wave packet method. The thermal rate constant based on the integral cross sections agrees well with the result of the experimental measurements, and the intersystem crossing effects are also discussed in this electronic energy-transfer process.  相似文献   

16.
The endothermic proton transfer reaction, H2+(upsilon+)+He-->HeH+ + H(DeltaE=0.806 eV), is investigated over a broad range of reactant vibrational levels using high-resolution vacuum ultraviolet to prepare reactant ions either through excitation of autoionization resonances, or using the pulsed-field ionization-photoelectron-secondary ion coincidence (PFI-PESICO) approach. In the former case, the translational energy dependence of the integral reaction cross sections are measured for upsilon+=0-3 with high signal-to-noise using the guided-ion beam technique. PFI-PESICO cross sections are reported for upsilon+=1-15 and upsilon+=0-12 at center-of-mass collision energies of 0.6 and 3.1 eV, respectively. All ion reactant states selected by the PFI-PESICO scheme are in the N+=1 rotational level. The experimental cross sections are complemented with quasiclassical trajectory (QCT) calculations performed on the ab initio potential energy surface provided by Palmieri et al. [Mol. Phys. 98, 1839 (2000)]. The QCT cross sections are significantly lower than the experimental results near threshold, consistent with important contributions due to resonances observed in quantum scattering studies. At total energies above 2 eV, the QCT calculations are in excellent agreement with the present results. PFI-PESICO time-of-flight (TOF) measurements are also reported for upsilon+=3 and 4 at a collision energy of 0.6 eV. The velocity inverted TOF spectra are consistent with the prevalence of a spectator-stripping mechanism.  相似文献   

17.
The stepwise two-step two-color and three-step three-color laser excitation schemes are used for selective population of rovibronic levels of the first-tier ion-pair E0(g)(+) and D0(u)(+) states of molecular iodine and studies of non-adiabatic transitions to the D and E states induced by collisions with M = I(2)(X) and H(2)O. Collection and analysis of the luminescence after excitation of the v(E) = 8, 13 and v(D) = 13, 18 vibronic levels of the E and D states in the pure iodine vapor and the gas-phase mixtures with H(2)O provide rate constants for the non-adiabatic transitions to the D and E state induced by collisions with these molecules. Vibrational distributions for the [formula: see text] collision-induced non-adiabatic transitions (CINATs) are obtained. Rather strong λ(lum)(max) ≈ 3400 ? luminescence band is observed in the I(2) + H(2)O mixtures, whereas its intensity is ~100 times less in pure iodine vapor. Radiative lifetimes and quenching rate constants of the I(2)(E,v(E) = 8, 13 and D,v(D) = 13, 18) vibronic state are also determined. Rate constants of the [formula: see text], v(E) = 8-54, CINATs are measured again and compared with those obtained earlier. New data confirm resonance characters of the CINATs found in our laboratory about 10 years ago. Possible reasons of differences between rate constant values obtained in this and earlier works are discussed. It is shown, in particular, that differences in rate constants of non-resonant CINATs are due to admixture of water vapor in iodine.  相似文献   

18.
The dynamics of the reaction, Y + O2--> YO + O was studied by using the crossed-beam technique at several collision energies from 10.3 to 52.0 kJ mol(-1). The Y atomic beam was generated by laser vaporization and crossed with the O2 beam at a right angle. Among the energetically accessible electronic states of YO, the formation of the A2Pi and A'2Delta states was observed by their chemiluminescence at all collision energies. By analyzing the chemiluminescence spectra of YO(A2Pi(1/2,3/2)-X2Sigma+), vibrational state distributions and relative populations of spin-orbit states were determined for YO(A2Pi(1/2,3/2)). At low collision energies, the vibrational distributions agree quite well with those expected from the statistical energy partitioning, while a little deviation from the statistical expectation was observed at the highest energy, 52.0 kJ mol(-1). The populations of two spin-orbit states are in good agreement with the statistical expectations at all collision energies. The vacuum ultraviolet laser-induced fluorescence (VUV-LIF) technique was employed to determine the distributions of spin-orbit states of the product O(3P(J)) at two collision energies, 20.7 and 52.0 kJ mol(-1). The line shapes of the O atom transitions were analyzed to determine relative branching ratio of the ground state to the excited states of YO, i.e. YO(X2Sigma+)+ O(3P(J))vs. YO(A2Pi and A'2Delta)+ O(3P(J)). The results showed that the electronically excited YO was formed with comparable amount with the ground state which is statistically more favorable, and suggested the occurrence of two mechanisms taking place in the title reaction.  相似文献   

19.
The title compound has been synthesized by the reaction of α-dithionaphthoic acid with CuCl2 in pyridine or by recrystallizing Cu4(α-C10H7CSS2)4 ? 1/2CS2 in a mixture of pyridine and alcohol. The structure of the title compound is determined by a single-crystal X-ray diffraction analysis. The crystal belongs to triclinic space group with unit cell parameters: a=7.085(2)Å, b= 8.672(3)Å and c=13.598(5)Å; a=92.40(3)°, β=102.59(4)° and γ=105.67(4)°; V=780.6Å2; Z=1. The structure was refined to R=0.058 for 2390 reflections. The molecule of the title compound sits on a center of symmetry. The shorter Cu—Cu bond length (2.606Å) shows considerable interaction between copper atoms. If the Cu—Cu interaction is ignored, the neighbouring S and N atoms are coordinated to copper atom in a configuration of distorted tetrahedron.  相似文献   

20.
The rate coefficient of the reaction NH(X (3)Sigma(-)) + H((2)S)-->(k(1a) )N((4)S) + H(2)(X (1)Sigma(g) (+)) is determined in a quasistatic laser-flash photolysis, laser-induced fluorescence system at low pressures (2 mbar< or =p< or =10 mbar). The NH(X) radicals are produced via the quenching of NH(a(1)Delta) (obtained by photolyzing HN(3)) with Xe whereas the H atoms are generated in a H(2)He microwave discharge. The NH(X) concentration profile is measured under pseudo-first-order condition, i.e., in the presence of a large excess of H atoms. The room temperature rate coefficient is determined to be k(1a) = (1.9 +/- 0.5) x 10(12) cm(3) mol(-1) s(-1). It is found to be independent of the pressure in the range considered in the present experiment. A global potential energy surface for the (4)A(") state is calculated with the internally contracted multireference configuration interaction method and the augmented correlation consistent polarized valence quadruple zeta atomic basis. The title reaction is investigated by classical trajectory calculations on this surface. The theoretical room temperature rate coefficient is k(1a) = 0.92 x 10(12)cm(3) mol(-1) s(-1). Using the thermodynamical data for the atoms and molecules involved, the rate coefficient for the reverse reaction, k(-1a), is also calculated. At high temperatures it agrees well with the measured k(-1a).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号