首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Different generalized Douglas-Kroll transformed Hamiltonians (DKn, n=1, 2,...,5) proposed recently by Hess et al. are investigated with respect to their performance in calculations of the spin-orbit splittings. The results are compared with those obtained in the exact infinite-order two-component (IOTC) formalism which is fully equivalent to the four-component Dirac approach. This is a comprehensive investigation of the ability of approximate DKn methods to correctly predict the spin-orbit splittings. On comparing the DKn results with the IOTC (Dirac) data one finds that the calculated spin-orbit splittings are systematically improved with the increasing order of the DK approximation. However, even the highest-order approximate two-component DK5 scheme shows certain deficiencies with respect to the treatment of the spin-orbit coupling terms in very heavy systems. The meaning of the removal of the spin-dependent terms in the so-called spin-free (scalar) relativistic methods for many-electron systems is discussed and a computational investigation of the performance of the spin-free DKn and IOTC methods for many-electron Hamiltonians is carried out. It is argued that the spin-free IOTC rather than the Dirac-Coulomb results give the appropriate reference for other spin-free schemes which are based on approximate two-component Hamiltonians. This is illustrated by calculations of spin-free DKn and IOTC total energies, r(-1) expectation values, ionization potentials, and electron affinities of heavy atomic systems.  相似文献   

2.
A two-component quasirelativistic Hamiltonian based on spin-dependent effective core potentials is used to calculate ionization energies and electron affinities of the heavy halogen atom bromine through the superheavy element 117 (eka-astatine) as well as spectroscopic constants of the homonuclear dimers of these atoms. We describe a two-component Hartree-Fock and density-functional program that treats spin-orbit coupling self-consistently within the orbital optimization procedure. A comparison with results from high-order Douglas-Kroll calculations--for the superheavy systems also with zeroth-order regular approximation and four-component Dirac results--demonstrates the validity of the pseudopotential approximation. The density-functional (but not the Hartree-Fock) results show very satisfactory agreement with theoretical coupled cluster as well as experimental data where available, such that the theoretical results can serve as an estimate for the hitherto unknown properties of astatine, element 117, and their dimers.  相似文献   

3.
Summary. Today it is common knowledge that relativistic effects are important in the heavy-element chemistry. The continuing development of the relativistic molecular theory is opening up rows of the periodic table that are impossible to treat with the non-relativistic approach. The most straightforward way to treat relativistic effects on heavy-element systems is to use the four-component Dirac-Hartree-Fock approach and its electron-correlation methods based on the Dirac-Coulomb(-Breit) Hamiltonian. The Dirac-Hartree-Fock (DHF) or Dirac-Kohn-Sham (DKS) equation with the four-component spinors composed of the large- and small-components demands severe computational efforts to solve, and its applications to molecules including heavy elements have been limited to small- to medium-size systems. Recently, we have developed a very efficient algorithm for the four-component DHF and DKS approaches. As an alternative approach, several quasi-relativistic approximations have also been proposed instead of explicitly solving the four-component relativistic equation. We have developed the relativistic elimination of small components (RESC) and higher-order Douglas-Kroll (DK) Hamiltonians within the framework of the two-component quasi-relativistic approach. The developing four-component relativistic and approximate quasi-relativistic methods have been implemented into a program suite named REL4D.In this article, we will introduce the efficient relativistic molecular theories to treat heavy-atomic molecular systems accurately via the four-component relativistic and the two-component quasi-relativistic approaches. We will also show several chemical applications including heavy-element systems with our relativistic molecular approaches.  相似文献   

4.
Today it is common knowledge that relativistic effects are important in the heavy-element chemistry. The continuing development of the relativistic molecular theory is opening up rows of the periodic table that are impossible to treat with the non-relativistic approach. The most straightforward way to treat relativistic effects on heavy-element systems is to use the four-component Dirac-Hartree-Fock approach and its electron-correlation methods based on the Dirac-Coulomb(-Breit) Hamiltonian. The Dirac-Hartree-Fock (DHF) or Dirac-Kohn-Sham (DKS) equation with the four-component spinors composed of the large- and small-components demands severe computational efforts to solve, and its applications to molecules including heavy elements have been limited to small- to medium-size systems. Recently, we have developed a very efficient algorithm for the four-component DHF and DKS approaches. As an alternative approach, several quasi-relativistic approximations have also been proposed instead of explicitly solving the four-component relativistic equation. We have developed the relativistic elimination of small components (RESC) and higher-order Douglas-Kroll (DK) Hamiltonians within the framework of the two-component quasi-relativistic approach. The developing four-component relativistic and approximate quasi-relativistic methods have been implemented into a program suite named REL4D.In this article, we will introduce the efficient relativistic molecular theories to treat heavy-atomic molecular systems accurately via the four-component relativistic and the two-component quasi-relativistic approaches. We will also show several chemical applications including heavy-element systems with our relativistic molecular approaches.  相似文献   

5.
In this paper we apply the direct-mapping density-functional theory (DFT) to open-shell systems, in order to get many-electron wave functions having the same transformation properties as the eigenstates of the exact Hamiltonians. Such a case is that of spin, where in order to get the magnetic properties, the many-particle states must be eigenstates not only of S(z) but also of S2. In this theory the Kohn and Sham [Phys. Rev. A 140, 1133 (1965)] potential is expressed directly as a mapping of the external potential. The total energies of the molecules calculated were satisfactory as their relative deviations (deltaEE) from the exact Hartree-Fock ones were of the order of 10(-4). This accuracy is much higher than that of the standard DFT in its local exchange potential approximation. This method does not need an approximate density as input, as the effective potential is derived directly from the external potential.  相似文献   

6.
We have employed the Douglas-Kroll-Hess approximation to derive the perturbative Hamiltonians involved in the calculation of NMR spin-spin couplings in molecules containing heavy elements. We have applied this two-component quasirelativistic approach using finite perturbation theory in combination with a generalized Kohn-Sham code that includes the spin-orbit interaction self-consistently and works with Hartree-Fock and both pure and hybrid density functionals. We present numerical results for one-bond spin-spin couplings in the series of tetrahydrides CH(4), SiH(4), GeH(4), and SnH(4). Our two-component Hartree-Fock results are in good agreement with four-component Dirac-Hartree-Fock calculations, although a density-functional treatment better reproduces the available experimental data.  相似文献   

7.
The theoretical and technical foundations are presented for the efficient relativistic electronic structure theories to treat heavy-atomic molecular systems. This review contains two surveys of four-component and two-component quasi-relativistic approaches. First, we review our highly efficient computational scheme for four-component relativistic ab initio molecular orbital (MO) methods over generally contracted spherical harmonic Gaussian-type spinors (GTSs). Illustrative calculations, which are performed with a new four-component relativistic ab initio molecular orbital program package REL4D, clearly show the efficiency of our computational scheme by the Dirac-Hartree-Fock (DHF) and Dirac-Hartree-Fock (DKS) methods. Next, in the two-component quasi-relativistic framework, two relativistic Hamiltonians, RESC and higher order Douglas-Kroll (DK) Hamiltonians, are introduced, and several illustrative calculations are shown. Numerical results for several systems show that good accuracy can be obtained with our third-order DK (DK3) Hamiltonian.  相似文献   

8.
A new relativistic two-component density functional approach, based on the Dirac-Kohn-Sham method and an extensive use of the technique of resolution of identity (RI), has been developed and is termed the DKS2-RI method. It has been applied to relativistic calculations of g and hyperfine tensors of coinage-metal atoms and some mercury complexes. The DKS2-RI method solves the Dirac-Kohn-Sham equations in a two-component framework using explicitly a basis for the large component only, but it retains all contributions coming from the small component. The DKS2-RI results converge to those of the four-component Dirac-Kohn-Sham with an increasing basis set since the error associated with the use of RI will approach zero. The RI approximation provides a basis for a very efficient implementation by avoiding problems associated with complicated integrals otherwise arising from the elimination of the small component. The approach has been implemented in an unrestricted noncollinear two-component density functional framework. DKS2-RI is related to Dyall's [J. Chem. Phys. 106, 9618 (1997)] unnormalized elimination of the small component method (which was formulated at the Hartree-Fock level and applied to one-electron systems only), but it takes advantage of the local Kohn-Sham exchange-correlation operators (as, e.g., arising from local or gradient-corrected functionals). The DKS2-RI method provides an attractive alternative to existing approximate two-component methods with transformed Hamiltonians (such as Douglas-Kroll-Hess [Ann. Phys. 82, 89 (1974); Phys. Rev. A 33, 3742 (1986)] method, zero-order regular approximation, or related approaches) for relativistic calculations of the structure and properties of heavy-atom systems. In particular, no picture-change effects arise in the property calculations.  相似文献   

9.
The approximate elimination of the small-component approach provides ansätze for the relativistic wave function. The assumed form of the small component of the wave function in combination with the Dirac equation define transformed but exact Dirac equations. The present derivation yields a family of two-component relativistic Hamiltonians which can be used as zeroth-order approximation to the Dirac equation. The operator difference between the Dirac and the two-component relativistic Hamiltonians can be used as a perturbation operator. The first-order perturbation energy corrections have been obtained from a direct perturbation theory scheme based on these two-component relativistic Hamiltonians. At the two-component relativistic level, the errors of the relativistic correction to the energies are proportional to 4 Z 4, whereas for the relativistic energy corrections including the first-order perturbation theory contributions, the errors are of the order of 6 Z 68 Z 8 depending on the zeroth-order Hamiltonian.Contribution to the Björn Roos Honorary Issue  相似文献   

10.
Quantum-mechanical evolution of systems with periodic time-modulated Hamiltonians is often described by effective interactions. Such average Hamiltonians, calculated as few terms of an expansion in powers of the interaction, are sometimes difficult to relate to experimental observations. We propose a frequency-domain approach to this problem, which offers certain advantages and produces an approximate solution for the density matrix, better linked to measurable quantities. The formalism is suitable for calculating the intensities of narrowed spectral peaks. Fast magic-angle-spinning NMR spectra of solids are used to experimentally illustrate the method.  相似文献   

11.
Relativistic Hartree–Fock–Roothaan (RHFR) self-consistent field theory for molecules developed by Malli and Oreg (J Chem Phys 63, 830, 1975) is reviewed. Ab initio all-electron fully relativistic Dirac–Fock and the corresponding nonrelativistic Hartree–Fock calculations for a number of molecular systems of heavy and superheavy elements are discussed in order to asecrtain relativistic effects. It is pointed out for the first time that there are dramatic antibinding effects of relativity for diatomics of the superheavy elements ekagold and ekaastatine. These are first results of antibinding effects of relativity in relativistic quantum chemistry. Moreover, in order to take into account the relativistic and electron correlation effects simultaneously for these systems, relativistic Moeller Plesset second order (RMP2), coupled-cluster singles doubles (RCCSD) and RCCSD with inclusion of triple corrections perturbationally (RCCSD(T)) calculations performed by the author for a number of atomic and molecular systems of superheavy elements (SHE) including the primordial SHE ekaplutonium E126 (Z = 126) (with g atomic spinors occupied in the ground state atomic configuration) are reported. Such calculations and results have not been reported before for systems of superheavy elements. Contribution to the Serafin Fraga Memorial Issue. An erratum to this article can be found at  相似文献   

12.
A new relativistic four-component density functional approach for calculations of NMR shielding tensors has been developed and implemented. It is founded on the matrix formulation of the Dirac-Kohn-Sham (DKS) method. Initially, unperturbed equations are solved with the use of a restricted kinetically balanced basis set for the small component. The second-order coupled perturbed DKS method is then based on the use of restricted magnetically balanced basis sets for the small component. Benchmark relativistic calculations have been carried out for the (1)H and heavy-atom nuclear shielding tensors of the HX series (X=F,Cl,Br,I), where spin-orbit effects are known to be very pronounced. The restricted magnetically balanced basis set allows us to avoid additional approximations and/or strong basis set dependence which arises in some related approaches. The method provides an attractive alternative to existing approximate two-component methods with transformed Hamiltonians for relativistic calculations of chemical shifts and spin-spin coupling constants of heavy-atom systems. In particular, no picture-change effects arise in property calculations.  相似文献   

13.
In order to achieve exact decoupling of the Dirac Hamiltonian within a unitary transformation scheme, we have discussed in part I of this series that either a purely numerical iterative technique (the Barysz-Sadlej-Snijders method) or a stepwise analytic approach (the Douglas-Kroll-Hess method) are possible. For the evaluation of Douglas-Kroll-Hess Hamiltonians up to a pre-defined order it was shown that a symbolic scheme has to be employed. In this work, an algorithm for this analytic derivation of Douglas-Kroll-Hess Hamiltonians up to any arbitrary order in the external potential is presented. We discuss how an estimate for the necessary order for exact decoupling (within machine precision) for a given system can be determined from the convergence behavior of the Douglas-Kroll-Hess expansion prior to a quantum chemical calculation. Once this maximum order has been accomplished, the spectrum of the positive-energy part of the decoupled Hamiltonian, e.g., for electronic bound states, cannot be distinguished from the corresponding part of the spectrum of the Dirac operator. An efficient scalar-relativistic implementation of the symbolic operations for the evaluation of the positive-energy part of the block-diagonal Hamiltonian is presented, and its accuracy is tested for ground-state energies of one-electron ions over the whole periodic table. Furthermore, the first many-electron calculations employing sixth up to fourteenth order DKH Hamiltonians are presented.  相似文献   

14.
The authors report the implementation of geometry gradients for quasirelativistic two-component Hartree-Fock and density functional methods using either the zero-order regular approximation Hamiltonian or spin-dependent effective core potentials. The computational effort of the resulting program is comparable to that of corresponding nonrelativistic calculations, as it is dominated by the evaluation of derivative two-electron integrals, which is the same for both types of calculations. Besides the implementation of derivatives of matrix elements of the one-particle Hamiltonian with respect to nuclear displacements, the calculation of the derivative exchange-correlation energy for the open shell case involves complicated expressions because of the noncollinear approach chosen to define the spin density. A pilot application to dihalogenides of element 116 shows how spin-orbit coupling strongly affects the chemistry of the superheavy p-block elements. While these molecules are bent at a scalar-relativistic level, spin-orbit coupling is so strong that only the 7p3/2 atomic orbitals of element 116 are involved in bonding, which favors linear molecular geometries for dihalogenides with heavy terminal halogen atoms.  相似文献   

15.
16.
In this paper effects of higher order Jahn-Teller coupling terms on the nonadiabatic dynamics are studied. Of particular interest is the case when the potential energy surfaces of the degenerate state show pronounced anharmonicity. In order to demonstrate the effects a two-dimensional E multiply sign in circle e Jahn-Teller model system is treated which is based on the e(') stretching vibration of the photoactive (2)E(') state of NO(3) as a realistic example. The sixth order E multiply sign in circle e Jahn-Teller Hamiltonian is derived in the diabatic representation which is valid for any system with a C(3) rotation axis. This diabatization scheme is compared to lower-order Jahn-Teller Hamiltonians and to symmetry adapted as well as ad hoc approximations. Lower-order potentials result in pronounced quantitative and qualitative differences in the dynamics, including differences in the evolution of mean values, the autocorrelation functions (and thus the corresponding spectra), and the electronic population evolution. In the particular example treated, the results of fourth and fifth order potentials are very similar to the sixth order reference system. In contrast, the approximate sixth order Hamiltonians, though the corresponding adiabatic surfaces seem to be nearly identical, results in pronounced differences. The possible consequences for the dynamics of realistic systems with higher dimensionality are briefly discussed.  相似文献   

17.
18.
Theoretical core effective potential methods are widely used in valence-only electron molecular calculations. These methods, which imply the frozen-core approximation, work well for the elements of the righthand side of the periodic table but are often unrealistic for metallic elements with highly polarizable cores. For these atoms one has to consider the polarization of the cores under the influence of the electric field created by the valence electrons. Moreover, relativistic corrections must be added for heavy atoms. Various theoretical approaches of core–valence interactions (polarization and core–valence correlations) will be reviewed, with a special emphasis on practical methods of calculation. The problem of handling the relativistic effects will mainly be discussed within the two-component Pauli formalism. It will be shown that the Foldy–Wouthuysen transformation is not the unique way for deriving relativistic corrections and that the second-order Dirac equation also provides a good starting point for obtaining relativistic corrections. Analytical exact results are given for the hydrogen atom. The accuracy of this approach is tested on many-electron atoms and molecules. It is finally shown that the problem of the core-valence separation is relevant to the general methodology of effective Hamiltonians that seems to provide the best promising way for filling the gap between the semiempirical and purely theoretical ab initio methods.  相似文献   

19.
The computation of indirect nuclear spin-spin coupling constants, based on the relativistic two-component zeroth order regular approximate Hamiltonian, has been recently implemented by us into the Amsterdam Density Functional program. Applications of the code for the calculation of one-bond metal-ligand couplings of coordinatively unsaturated compounds containing (195)Pt and (199)Hg, including spin-orbit coupling or coordination effects by solvent molecules, show that relativistic density functional calculations are able to reproduce the experimental findings with good accuracy for the systems under investigation. Spin-orbit effects are rather small for these cases, while coordination of the heavy atoms by solvent molecules has a great impact on the calculated couplings. Experimental trends for different solvents are reproduced. An orbital-based analysis of the solvent effect is presented. The scalar relativistic increase of the coupling constants is of the same order of magnitude as the nonrelativistically obtained values, making a relativistic treatment essential for obtaining quantitatively correct results. Solvent effects can be of similar importance.  相似文献   

20.
E. coli has two-component systems composed of histidine kinase proteins and response regulator proteins. For a given extracellular stimulus, a histidine kinase senses the stimulus, autophosphorylates and then passes the phosphates to the cognate response regulators. The histidine kinase in an orthodox two-component system has only one histidine domain where the autophosphorylation occurs, but a histidine kinase in some unusual two-component systems (unorthodox two-component systems) has two histidine domains and one aspartate domain. So, the unorthodox two-component systems have more complex phosphorelay mechanisms than orthodox two-component systems. In general, the two-component systems are required to promptly respond to external stimuli for survival of E. coli. In this respect, the complex multi-step phosphorelay mechanism seems to be disadvantageous, but there are several unorthodox two-component systems in E. coli. In this paper, we investigate the reason why such unorthodox two-component systems are present in E. coli. For this purpose, we have developed simplified mathematical models of both orthodox and unorthodox two-component systems and analyzed their dynamical characteristics through extensive computer simulations. We have finally revealed that the unorthodox two-component systems realize ultrasensitive responses to external stimuli and also more robust responses to noises than the orthodox two-component systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号