首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A state-selected beam of hydroxyl radicals is generated using a pulsed discharge source and hexapole field. The OH radicals are characterized by resonance-enhanced multiphoton ionization (REMPI) spectroscopy via the nested D 2Sigma- and 3 2Sigma- Rydberg states. Simplified spectra are observed from the selected |MJ|=3/2 component of the upper Lambda-doublet level of the lowest rotational state (J=32) in ground (v"=0) and excited (v"=1-3) vibrational levels of the OH X 2Pi3/2 state. Two-photon transitions are observed to the D 2Sigma-(v'=0-3) and 3 2Sigma-(v'=0,1) vibronic levels, extending previous studies to higher vibrational levels of the Rydberg states. Spectroscopic constants are derived for the Rydberg states and compared with prior experimental studies. Complementary first-principle theoretical studies of the properties of the D 2Sigma- and 3 2Sigma- Rydberg states [see M. P. J. van der Loo and G. C. Groenenboom, J. Chem. Phys. 123, 074310 (2005), following paper] are used to interpret the experimental findings and examine the utility of the (2+1) REMPI scheme for sensitive detection of OH radicals.  相似文献   

2.
For the diatomic aluminum nitride (AlN), we have constructed potential energy curves for 45 states employing multi-reference variational methods and quantitative basis sets. Thirty-six states are relatively strongly bound, five present local minima, and four are of repulsive nature. Almost all states are of intense multi-reference character rendering their calculation and interpretation quite problematic. Our tentative assignment of the ground state is 3Pi, while a 3Sigma- state is above by less than 1 kcal/mol. Our best estimate for the binding energy of the X3Pi state is D0 = 56.0 +/- 0.5 kcal/mol at re = 1.783 A, in good agreement with the experimental values of D = 66 +/- 9 kcal/mol and re = 1.7864 A. The binding energy of the A3Sigma- state is very similar to the X state because they both correlate to the ground-state atoms, but the bond distance of the former is 0.13 A longer. The first seven states can be tagged as follows: X3Pi, A3Sigma-, a1Sigma+, b1Pi, c1Delta, B3Sigma+, and d1Sigma+, a rather definitive order with the exception of X and A states.  相似文献   

3.
Totally 3045 transitions into the 2(3)Pi(g) v = 0-42, J = 0-103, Omega = 0, 1, 2 rovibrational levels have been observed by infrared-infrared double resonance fluorescence excitation and two-photon spectroscopy. Molecular constants including the spin-orbit interaction parameters are obtained. Although the K2 2(3)Pi(g) state dissociates to the 4s + 3d atomic limit, it is strongly mixed with the 3P ionic states in the range of the potential well. This mixing results in a relatively large equilibrium internuclear distance Re = 5.254 A and a larger spin-orbit constant A0 approximately 14.17 cm(-1) than that of the atomic limit -2.33 cm(-1). Strong perturbations of the 2(3)Pi(g) levels observed are attributed to the spin-orbit coupling with the 4(1)Sigma(g)+ state.  相似文献   

4.
Ab initio based configuration interaction calculations have been carried out to study the low-lying electronic states and spectroscopic properties of the heaviest nonradioactive silicon chalcogenide molecule and its monopositive ion. Spectroscopic constants and potential energy curves of states of both SiTe and SiTe+ within 5 eV are reported. The calculated dissociation energies of SiTe and SiTe+ are 4.41 and 3.52 eV, respectively. Effects of the spin-orbit coupling on the electronic spectrum of both the species are studied in detail. The spin-orbit splitting between the two components of the ground state of SiTe+ is estimated to be 1880 cm(-1). Transitions such as 0+ (II)-X1Sigma(+)0+, 0+ (III)-X1Sigma(+)0+, E1Sigma(+)0+ -X1Sigma(+)0+, and A1Pi1-X1Sigma(+)0+ are predicted to be strong in SiTe. The radiative lifetime of the A1Pi state is less than a microsecond. The X(2)2Pi(1/2)-X(1)2Pi(3/2) transition in SiTe+ is allowed due to spin-orbit mixing. However, it is weak in intensity with a partial lifetime for the X2 state of about 108 ms. The electric dipole moments of both SiTe and SiTe+ in their low-lying states are calculated. The vertical ionization energies for the ionization of the ground-state SiTe to different ionic states are also reported.  相似文献   

5.
We have measured the hyperfine structure of mutually perturbing rovibrational levels of the 1(b) 3Pi0 and 2(A) 1Sigma+ states of the NaK molecule, using the perturbation-facilitated optical-optical double resonance method with copropagating lasers. The unperturbed 1(b) 3Pi0 levels are split into four hyperfine components by the Fermi contact interaction bFIS. Mixing between the 1(b) 3Pi0 and 2(A) 1Sigma+ levels imparts hyperfine structure to the nominally singlet component of the perturbed levels and reduces the hyperfine splitting of the nominally triplet component. Theoretical analysis relates these observations to the hyperfine splitting that each 1(b) 3Pi0 level would have if it were not perturbed by a 2(A) 1Sigma+ level. Using this analysis, we demonstrate that significant hyperfine splitting arises because the 1(b) 3Pi0 state cannot be described as pure Hund's case (a). We determine bF for the 1(b) 3Pi0 levels and also a more accurate value for the magnitude of the singlet-triplet spin-orbit coupling HSO=[1(b) 3Pi0(vb,J)(H(SO))2(A) 1Sigma+(vA,J). Using the known spectroscopic constants of the 1(b) 3Pi state, we obtain bF=0.009 89+/-0.000 27 cm(-1). The values of (H(SO)) are found to be between 2 and 3 cm(-1), depending on vb, vA, and J. Dividing (H(SO)) by calculated vibrational overlap integrals, and taking account of the 1(b) 3Pi(Omega) rotational mixing, we can determine the magnitude of the electronic part H(el) of H(SO). Our results yield (H(el))=(16.33+/-0.15) cm(-1), consistent with our previous determinations using different techniques.  相似文献   

6.
We investigate the vibronic and spin-orbit (SO) coupling effects in the state-selected dynamics of the title reaction with the aid of a time-dependent wave packet approach. The ab initio potential energy surfaces of Capecchi and Werner [Science 296, 715 (2002)] have been employed for this purpose. Collinear approach of the Cl((2)P) atom to the H(2) molecule splits the degeneracy of the (2)P state and gives rise to (2)Sigma and (2)Pi electronic states. These two surfaces form a conical intersection at this geometry. These states transform as 1 (2)A('), 1 (2)A("), and 2 (2)A('), respectively, at the nonlinear configurations of the nuclei. In addition, the SO interaction due to Cl atom further splits these states into (2)Sigma(1/2), (2)Pi(3/2), and (2)Pi(1/2) components at the linear geometry. The ground-state reagent Cl((2)P(3/2))+H(2) correlates with (2)Sigma(1/2) and (2)Pi(3/2), where as the SO excited reagent Cl(*)((2)P(1/2))+H(2) correlates with (2)Pi(1/2) at the linear geometry. In order to elucidate the impact of the vibronic and SO coupling effects on the initial state-selected reactivity of these electronic states we carry out quantum scattering calculations based on a flux operator formalism and a time-dependent wave packet approach. In this work, total reaction probabilities and the time dependence of electronic population of the system by initiating the reaction on each of the above electronic states are presented. The role of conical intersection alone on the reaction dynamics is investigated with a coupled two-state model and for the total angular momentum J=0 (neglecting the electronic orbital angular momentum) both in a diabatic as well as in the adiabatic electronic representation. The SO interaction is then included and the dynamics is studied with a coupled three-state model comprising six diabatic surfaces for the total angular momentum J=0.5 neglecting the Coriolis Coupling terms of the Hamiltonian. Companion calculations are carried out for the uncoupled adiabatic and diabatic surfaces in order to explicitly reveal the impact of two different surface coupling mechanisms in the dynamics of this prototypical reaction.  相似文献   

7.
The spin-orbit (A = -16.4 cm(-1)) and rotational (B = 1.017 cm(-1)) constants for the N2 C" 5Pi(ui)(v = 3) level are determined by a fit to rotational lines in the C" 5Pi(u)-A' 5Sigma(g)+(3-1) band that terminate in J'Omega' = 3(3), 4(3), 3(2), and 4(2) levels of the C" state. The C"-state spin-orbit constant is consistent with semi-empirical estimates, based on spin-orbit constants observed in several other electronic states of N2 and the atomic spin-orbit coupling constant, zeta(N 2p). The C"-A' bands exhibit the unusual feature of oppositely degraded sub-band heads, Omega' = 3 (red) and Omega' = 1, 0, and -1 (blue). The unusually wide range of B(Omega)eff values, from 0.85 cm(-1) (Omega = 3) to 1.28 cm(-1) (Omega = -1) for C" 5Pi(v = 3) should be diagnostically useful for Omega'-assignments. The C" 5Pi(v = 3) level lies 14257.17 and 90599 cm(-1) above A' 5Sigma(g)+(v = 1) and X 1Sigma(g)+(v = 0), respectively, and Re(C" 5Pi) = 1.50 A.  相似文献   

8.
The electronic structure of a series of low-lying excited triplet and quintet states of scandium boride (ScB) was examined using multireference configuration interaction (including Davidson's correction for quadruple excitations) and single-reference coupled cluster (CC) methods with averaged natural orbital (ANO) basis sets. The CC approach was used only for the lowest quintet state. The authors have analyzed eight low-lying triplets 3Sigma-(2), 3Sigma+, 3Pi(3), and 3Delta(2) dissociating to Sc(2D)/B(2P) atoms and eight low-lying quintet states 5Sigma-, 5Sigma+, 5Pi(2), 5Phi, and 5Delta(3) dissociating to Sc(4F)/B(2P) atoms. They report the potential energy curves and spectroscopic parameters of ScB obtained with the multireference configuration interaction (MRCI) technique including all singly and doubly excited configurations obtained with the ANO-S basis set. For the two lowest states they obtained also improved ANO-L spectroscopic constants, dipole and quadrupole moments as well as scalar relativistic effects based on the Douglas-Kroll-Hess Hamiltonian. They provide the analysis of the bonding based on Mulliken populations and occupation numbers. Since the two lowest states, 3Sigma- and 5Sigma-, lie energetically very close, their principal goal was to resolve the nature of the ground state of ScB. Their nonrelativistic MRCI(Q) (including Davidson correction) results indicate that the quintet is more stable than the triplet by about 800 cm(-1). Inclusion of scalar relativistic effects reduces this difference to about 240 cm(-1). The dissociation energies for 5Sigma- ScB range from 3.20 to 3.30 eV while those for the 3Sigma- range from 1.70 to 1.80 eV.  相似文献   

9.
Parity resolved state-to-state cross sections for inelastic scattering of OH (X2Pi) by HCl were measured in a crossed molecular beam experiment at the collision energy of 920 cm(-1). The OH (X2Pi) radicals were prepared in a single quantum state, Omega=3/2, J=3/2, MJ=3/2, f, by means of electrostatic state selection in a hexapole field. The rotational distribution of the scattered OH radicals by HCl was probed by saturated LIF spectroscopy of the 0-0 band of the A 2Sigma+ - X 2Pi transition. Relative state-to-state cross sections were measured for rotational excitations up to J=9/2 within the Omega=3/2 spin-orbit manifold and up to J=7/2 within the Omega=1/2 spin-orbit manifold. A propensity for spin-orbit conserving transitions was found, but no propensity for excitation into a particular Lambda-doublet component of the same rotational state was evident. The data are presented and discussed in comparison with results previously obtained for collisions of OH with CO (Ecoll=450 cm(-1)) and N2 (Ecoll=410 cm(-1)) and with new data we have measured for the OH+CO system at a comparable collision energy (Ecoll=985 cm(-1)). This comparison suggests that the potential energy surface (PES) governing the interaction between OH and HCl is more anisotropic than the PES's governing the intermolecular interaction of OH with CO and N2.  相似文献   

10.
Nonadiabatic theory of molecular spectra of diatomic molecules is presented. It is shown that in the fully nonadiabatic framework, the rovibrational wave functions describing the nuclear motions in diatomic molecules can be obtained from a system of coupled differential equations. The rovibrational wave functions corresponding to various electronic states are coupled through the relativistic spin-orbit coupling interaction and through different radial and angular coupling terms, while the transition intensities can be written in terms of the ground state rovibrational wave function and bound rovibrational wave functions of all excited electronic states that are electric dipole connected with the ground state. This theory was applied in the nearly exact nonadiabatic calculations of energy levels, line positions, and intensities of the calcium dimer in the A (1)Sigma(u) (+)(1 (1)S+1 (1)D), c (3)Pi(u)(1 (3)P+1 (1)S), and a (3)Sigma(u) (+)(1 (3)P+1 (1)S) manifolds of states. The excited state potentials were computed using a combination of the linear response theory within the coupled-cluster singles and doubles framework for the core-core and core-valence electronic correlations and of the full configuration interaction for the valence-valence correlation, and corrected for the one-electron relativistic terms resulting from the first-order many-electron Breit theory. The electric transition dipole moment governing the A (1)Sigma(u) (+)<--X (1)Sigma(g) (+) transitions was obtained as the first residue of the frequency-dependent polarization propagator computed with the coupled-cluster method restricted to single and double excitations, while the spin-orbit and nonadiabatic coupling matrix elements were computed with the multireference configuration interaction wave functions restricted to single and double excitations. Our theoretical results explain semiquantitatively all the features of the observed Ca(2) spectrum in the A (1)Sigma(u) (+)(1 (1)S+1 (1)D), c (3)Pi(u)(1 (3)P+1 (1)S), and a (3)Sigma(u) (+)(1 (3)P+1 (1)S) manifolds of states.  相似文献   

11.
The emission spectrum of the D(2) molecule has been studied at high resolution in the vacuum ultraviolet region 78.5-102.7 nm. A detailed analysis of the two D (1)Pi(u)-->X (1)Sigma(g) (+) and D(') (1)Pi(u) (-)-->X (1)Sigma(g) (+) electronic band systems is reported. New and improved values of the level energies of the two upper states have been derived with the help of the program IDEN [V. I. Azarov, Phys. Scr. 44, 528 (1991); 48, 656 (1993)], originally developed for atomic spectral analysis. A detailed comparison is made between the observed energy levels and solutions of coupled equations using the newest ab initio potentials by Wolniewicz and co-workers [J. Chem. Phys. 103, 1792 (1995); 99, 1851 (1993); J. Mol. Spectros. 212, 208 (2002); 220, 45 (2003)] taking into account the nonadiabatic coupling terms for the D (1)Pi(u) state with the lowest electronic states B (1)Sigma(u) (+), C (1)Pi(u), and B(') (1)Sigma(u) (+). A satisfactory agreement has been found for most of the level energies belonging to the D and D(') states. The remaining differences between observation and theory are probably due to nonadiabatic couplings with other higher electronic states which were neglected in the calculations.  相似文献   

12.
Complete active space self-consistent-field (CASSCF) and multiconfiguration second-order perturbation theory (CASPT2) calculations with atomic natural orbital basis sets were performed to investigate the S-loss direct dissociation of the 1 2Pi(X 2Pi), 2 2Pi(A 2Pi), 1 2Sigma+(B 2Sigma+), 1 4Sigma-, 1 2Sigma-, and 1 2Delta states of the OCS+ ion and the predissociations of the 1 2Pi, 2 2Pi, and 1 2Sigma+ states. Our calculations indicate that the S-loss dissociation products of the OCS(+) ion in the six states are the ground-state CO molecule plus the S+ ion in different electronic states. The CASPT2//CASSCF potential energy curves were calculated for the S-loss dissociation from the six states. The calculations indicate that the dissociation of the 1 4Sigma- state leads to the CO + S+ (4Su) products representing the first dissociation limit; the dissociations of the 1 2Pi, 1 2Sigma-, and 1 2Delta states lead to the CO + S+(2Du) products representing the second dissociation limit; and the dissociations of the 2 2Pi and 1 2Sigma+ states lead to the CO + S+(2Pu) products representing the third dissociation limit. Seams of the 1 2Pi-1 4Sigma-, 2 2Pi-1 4Sigma-, 2 2Pi-1 2Sigma-, 2 2Pi-1 2Delta, and 1 2Sigma(+)-1 4Sigma- potential energy surface intersections were calculated at the CASPT2 level, and the minima along the seams were located. The calculations indicate that within the experimental energy range (15.07-16.0 eV) the 2 2Pi(A 2Pi) state can be predissociated by 1 4Sigma- forming the S+(4Su) ion and can undergo internal conversion to 1 2Pi followed by the direct dissociation of 1 2Pi forming S+(2Du) and that within the experimental energy range (16.04-16.54 eV) the 1 2Sigma+(B 2Sigma+) state can be predissociated by 1 4Sigma- forming the S+(4Su) ion and can undergo internal conversion to 2 2Pi followed by the predissociation of 2 2Pi by 1 2Sigma- and 1 2Delta forming the S+(2Du) ion. These indications are in line with the experimental fact that both the 4Su and 2Du states of the S+ ion can be formed from the 2 2Pi and 1 2Sigma+ states of the OCS+ ion.  相似文献   

13.
The low-lying XSigma+, a3Delta, A1Delta, b3Sigma+, B1Pi, c3Pi, C1Phi, D1Sigma+, E1Pi, d3Phi, and e3Pi electronic states of RhB have been investigated at the ab initio level, using the multistate multiconfigurational second-order perturbation (MS-CASPT2) theory, with extended atomic basis sets and inclusion of scalar relativistic effects. Among the eleven electronic states included in this work, only three (the X1Sigma+, D1Sigma+, and E1Pi states) have been investigated experimentally. Potential energy curves, spectroscopic constants, dipole moments, binding energies, and chemical bonding aspects are presented for all electronic states.  相似文献   

14.
The Hartree-Fock-Heitler-London, HF-HL, method is a new ab initio approach which variationally combines the Hartree-Fock, HF, and the Heitler-London, HL, approximations, yielding correct dissociation products. Furthermore, the new method accounts for nondynamical correlation and explicitly considers avoided crossing. With the HF-HL model we compute the ground-state potential energy curves for H2 [1Sigma+g], LiH [X 1Sigma+], BeH [2Sigma+], BH [1Sigma+], CH [2Pi], NH [3Sigma-], OH [2Pi], and FH [1Sigma+], obtaining in average 80% of the experimental binding energy with a correct representation of bond breaking. Inclusion of ionic configurations improves the computed binding energy. The computed dipole moment is in agreement with laboratory data. The dynamical and nondynamical correlation energies for atomic and molecular systems with 2-10 electrons are analyzed. For BeH the avoided crossing of the two lowest [2Sigma+] states is considered in detail. The HF-HL function is proposed as the zero-order reference wave function for molecular systems. To account for the dynamical correlation energy a post-HF-HL technique based on multiconfiguration expansions is presented. We have computed the potential energy curves for H2 [1Sigma+g], HeH [2Sigma+], LiH [X1Sigma+], LiH [A1Sigma+], and BeH [2Sigma+]. The corresponding computed binding energies are 109.26 (109.48), 0.01 (0.01), 57.68 (58.00), 24.19 (24.82), and 49.61 (49.83) kcal/mol, with the experimental values given in parentheses. The corresponding total energies are -1.1741, -3.4035, -8.0695, -7.9446, and -15.2452 hartrees, respectively, the best ab initio variational published calculations, H2 excluded.  相似文献   

15.
State-selective mass spectrometry has revealed one conclusive and another probable metastable state of the N2O2+ dication, assigned respectively as 1 3Pi at 38.5 eV and 2 3Pi at 42.5 eV. Photon coincidence experiments confirm that dissociation of 1 3Pi is preceded by a fluorescent transition to X 3Sigma- and also indicate that an identical mechanism occurs for 2 3Pi. Highly correlated MRCI calculations are performed at a range of N2O2+ geometries, from which both N-N and N-O bond stretching curves are generated. Substantial barriers along both coordinates are observed for 1 3Pi and 2 3Pi, although the increasing density of states at higher energy may allow spin-orbit or vibronic predissociation for 2 3Pi. Fragment emissions derived from N2O+ and N2O2+ are analyzed with the aid of glass filters, from which NO (X 2Pi<--A 2Sigma+) and vibrationally excited N2+ (X 2Sigmag+<--B 2Sigmau+) transitions are deduced.  相似文献   

16.
The hyperfine structures of the 2 (3)Sigma(g) (+), 3 (3)Sigma(g) (+), and 4 (3)Sigma(g) (+) states of Na(2) have been resolved with sub-Doppler continuous wave perturbation facilitated optical-optical double resonance spectroscopy via A (1)Sigma(u) (+) approximately b (3)Pi(u) mixed intermediate levels. The hyperfine patterns of these three states are similar. The hyperfine splittings of the low rotational levels are all very close to the case b(betaS) limit. As the rotational quantum number increases, the hyperfine splittings become more complicated and the coupling cases become intermediate between cases b(betaS) and b(beta J) due to spin-rotation interaction. We present a detailed analysis of the hyperfine structures of these three (3)Sigma(g) (+) states, employing both case b(betaS) and b(beta J) coupling basis sets. The results show that the hyperfine splittings of the (3)Sigma(g) (+) states are mainly due to the Fermi-contact interaction. The Fermi contact constants for the two d sigma Rydberg states, the 2 (3)Sigma(g) (+) and 4 (3)Sigma(g) (+), are 245+/-5 MHz and 225+/-5 MHz, respectively, while the Fermi contact constant of the s sigma 3 (3)Sigma(g) (+) Rydberg state is 210+/-5 MHz. The diagonal spin-spin and spin-rotation constants, and nuclear spin-electronic spin dipolar interaction parameters of the 3 (3)Sigma(g) (+) and 4 (3)Sigma(g) (+) states are also obtained.  相似文献   

17.
Relative state-to-state cross sections of OH molecules in the (2)Pi(32), v=0, J=32, M(J)=32, f state have been determined for transitions up to (2)Pi(32), v=0, J=112, f and (2)Pi(12), v=0, J=72, e states by collisions with HBr molecules ((1)Sigma, v=0, J<4) at 750 cm(-1) collision energy. In order to investigate features of the anisotropy of the OH-HBr potential energy surface, the steric asymmetries, which account for the effect of the OH orientation with respect to the collision partner, have been measured. A comparison with other systems previously studied shows strong similarities with the OH-HCl system.  相似文献   

18.
Potential energy surfaces for all Born-Oppenheimer electronic states of IBr molecule correlating to the neutral (2)P ((2)P(3/2) and (2)P(1/2)) iodine and bromine are calculated for the first time. Electric dipole and polarizability curves (static and transition) are also determined. Calculations include scalar and spin-orbit relativistic effects within all-electron Douglas-Kroll two-component Hamiltonian. Electron correlation is treated with quasi-degenerate multi-reference second-order perturbation theory. Seven adiabatic electronic states (X (1)Sigma(+), A'(3)Pi(2), A (3)Pi(1), 1 (3)Pi(0-), B (3)Pi(0+), B'(3)Sigma, and 2 (3)Pi(0+)) exhibit significant covalent bonding, and can support vibrational states. Calculated spectroscopic parameters agree with experiment to better than 1000 cm(-1) (T(e)), 10 cm(-1) (omega(e)), and 0.05 Angstrom (r(e)). A new 1 (3)Pi(0-) state correlating to ground-state atoms is predicted at T(e) approximately 14 000 cm(-1), omega(e) approximately 80 cm(-1), and r(e) approximately 3.0 Angstrom. The second new state (2 (3)Pi(0+)) correlates to excited iodine atom, with T(e) approximately 20 000 cm(-1), omega(e) approximately 115 cm(-1), and r(e) approximately 3.3 Angstrom. Non-adiabatic coupling parameters are calculated for the four avoided crossings, which arise due to electronic spin-orbit interaction. Estimated parameters of the B (3)Pi(0+)/B'(3)Sigma crossing (R(c) approximately 3.32 Angstrom; V approximately 120 cm(-1)) agree with experimental values. The previously unsuspected 2 (3)Pi(0-)/1 (1)Sigma(-) crossing of two repulsive surfaces provides a new collisional deactivation channel for Br* atoms at relative velocities above 1000 m s(-1). Several repulsive states (including 1 (1)Pi(1) and 2 (3)Pi(1)) intersect the B/B' system near the avoided crossing point, and may affect dynamics of IBr in strong laser fields.  相似文献   

19.
The dynamics of the reaction, Y + O2--> YO + O was studied by using the crossed-beam technique at several collision energies from 10.3 to 52.0 kJ mol(-1). The Y atomic beam was generated by laser vaporization and crossed with the O2 beam at a right angle. Among the energetically accessible electronic states of YO, the formation of the A2Pi and A'2Delta states was observed by their chemiluminescence at all collision energies. By analyzing the chemiluminescence spectra of YO(A2Pi(1/2,3/2)-X2Sigma+), vibrational state distributions and relative populations of spin-orbit states were determined for YO(A2Pi(1/2,3/2)). At low collision energies, the vibrational distributions agree quite well with those expected from the statistical energy partitioning, while a little deviation from the statistical expectation was observed at the highest energy, 52.0 kJ mol(-1). The populations of two spin-orbit states are in good agreement with the statistical expectations at all collision energies. The vacuum ultraviolet laser-induced fluorescence (VUV-LIF) technique was employed to determine the distributions of spin-orbit states of the product O(3P(J)) at two collision energies, 20.7 and 52.0 kJ mol(-1). The line shapes of the O atom transitions were analyzed to determine relative branching ratio of the ground state to the excited states of YO, i.e. YO(X2Sigma+)+ O(3P(J))vs. YO(A2Pi and A'2Delta)+ O(3P(J)). The results showed that the electronically excited YO was formed with comparable amount with the ground state which is statistically more favorable, and suggested the occurrence of two mechanisms taking place in the title reaction.  相似文献   

20.
We have recorded spectra involving the 3-1, 4-2, 2-0, and 2-2 bands of the C" 5Pi(ui)-A' (5)Sigma+(g) electronic system of N(2) using optogalvanic detection in a discharge through a supersonic jet expansion of argon mixed with a trace of nitrogen gas. The spectra have an effective rotational temperature of about 45 K. They involve all five spin-orbit components of the C" 5Pi(ui) state, which has allowed for precise determination of the spin-orbit coupling in this state. Analysis of the C" 5Pi(ui) state Lambda-doubling shows that it is caused primarily by a first-order spin-spin effect rather than by interaction with Sigma(u) (+/-) states. Our results allow us to assign lines in the 4-2 and 2-0 bands observed in a fluorescence depletion experiment conducted over ten years ago [Ch. Ottinger and A. F. Vilesov, J. Chem. Phys. 103, 9929 (1995)], and to comment on the suggestion that perturbations to the C (3)Pi(u) v=1 level of N(2) arise from interactions with the C" 5Pi(ui) state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号