首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Based on the coincidence degree theory of Mawhin, we get a new general existence result for the following higher-order multi-point boundary value problem at resonance
$\begin{gathered} x^{(n)} (t) = f(t,x(t),x'(t),...,x^{(n - 1)} (t)),t \in (0,1), \hfill \\ x(0) = \sum\limits_{i = 1}^m {a_i x(\xi _i ),x'(0) = ... = x^{(n - 2)} (0) = 0,x^{(n - 1)} (1) = } \sum\limits_{j = 1}^l {\beta _j x^{(n - 1)} (\eta _j )} , \hfill \\ \end{gathered} $\begin{gathered} x^{(n)} (t) = f(t,x(t),x'(t),...,x^{(n - 1)} (t)),t \in (0,1), \hfill \\ x(0) = \sum\limits_{i = 1}^m {a_i x(\xi _i ),x'(0) = ... = x^{(n - 2)} (0) = 0,x^{(n - 1)} (1) = } \sum\limits_{j = 1}^l {\beta _j x^{(n - 1)} (\eta _j )} , \hfill \\ \end{gathered}   相似文献   

2.
ДОкАжАНО, ЧтО Дль тОгО, ЧтОБы Дльr РАж ДИФФЕРЕНцИРУЕМОИ НА пРОМЕжУткЕ [А, + ∞) ФУНкцИИf сУЩЕстВОВА л тАкОИ МНОгОЧлЕН (1) $$P(x) = \mathop \Sigma \limits_{\kappa = 0}^{r - 1} a_k x^k ,$$ , ЧтО (2) $$\mathop {\lim }\limits_{x \to + \infty } (f(x) - P(x))^{(k)} = 0,k = 0,1,...,r - 1,$$ , НЕОБхОДИМО И ДОстАтО ЧНО, ЧтОБы схОДИлсь ИН тЕгРАл (3) $$\int\limits_a^{ + \infty } {dt_1 } \int\limits_{t_1 }^{ + \infty } {dt_2 ...} \int\limits_{t_{r - 1} }^{ + \infty } {f^{(r)} (t)dt.}$$ ЕслИ ЁтОт ИНтЕгРАл сх ОДИтсь, тО Дль кОЁФФИц ИЕНтОВ МНОгОЧлЕНА (1) ИМЕУт МЕс тО ФОРМУлы $$\begin{gathered} a_{r - m} = \frac{1}{{(r - m)!}}\left( {\mathop \Sigma \limits_{j = 1}^m \frac{{( - 1)^{m - j} f^{(r - j)} (x_0 )}}{{(m - j)!}}} \right.x_0^{m - j} + \hfill \\ + ( - 1)^{m - 1} \left. {\mathop \Sigma \limits_{l = 0}^{m - 1} \frac{{x_0^l }}{{l!}}\int\limits_a^{ + \infty } {dt_1 } \int\limits_{t_1 }^{ + \infty } {dt_2 ...} \int\limits_{t_{m - l - 1} }^{ + \infty } {f^{(r)} (t_{m - 1} )dt_{m - 1} } } \right),m = 1,2,...,r. \hfill \\ \end{gathered}$$ ДОстАтОЧНыМ, НО НЕ НЕОБхОДИМыМ Усл ОВИЕМ схОДИМОстИ кРА тНОгО ИНтЕгРАлА (3) ьВльЕтсь схОДИМОсть ИНтЕгРАл А \(\int\limits_a^{ + \infty } {x^{r - 1} f^{(r)} (x)dx}\)   相似文献   

3.
I begin with a new short proof of: (I) LetP(t) inR d be a function oft havingn continuous derivatives foratx. ThenP(x)∈ convK, where $$K = \left\{ {\sum\limits_{j = 0}^{n - 1} {\frac{{(x - a)^j }}{{j!}}} P^{(j)} (a) + \frac{{(x - a)^n }}{{n!}}P^{(n)} (t),a \leqslant t \leqslant x} \right\}.$$ for applying (I) let bef(t) a real function such that the point ((t?a) n+1,f(t)) fulfills the conditions of (I). Then (I) gives a sharper estimate of then th remainder term off(x) than the Lagrange remainder formula. Iff( n )(t) is also convex inatx, thenf(x)∈[c,d], where $$\begin{gathered} c = \sum\limits_{j = 0}^{n - 1} {\frac{{(x - a)^j }}{{j!}}f^{(j)} (a) + \frac{{(x - a)^n }}{{n!}}f^{(n)} \left( {\frac{{na + x}}{{n + 1}}} \right)} , \hfill \\ d = \sum\limits_{j = 0}^{n - 1} {\frac{{(x - a)^j }}{{j!}}f^{(j)} (a) + \frac{{(x - a)^n }}{{n!}}} \frac{{nf^{(n)} (a) + f^{(n)} (x)}}{{n + 1}}. \hfill \\ \end{gathered} $$   相似文献   

4.
An alternating sign matrix is a square matrix whose entries are 1, 0, or –1, and which satisfies certain conditions. Permutation matrices are alternating sign matrices. In this paper, we use the (generalized) Littlewood's formulas to expand the products and 2 as sums indexed by sets of alternating sign matrices invariant under a 180° rotation. If we put t = 1, these expansion formulas reduce to the Weyl's denominator formulas for the root systems of type B n and C n. A similar deformation of the denominator formula for type D n is also given.  相似文献   

5.
BOUNDARYVALUEPROBLEMSOFSINGULARLYPERTURBEDINTEGRO-DIFFERENTIALEQUATIONSZHOUQINDEMIAOSHUMEI(DepartmentofMathematics,JilinUnive...  相似文献   

6.
Найдены методы восст ановления интеграла по информации $$I\left( f \right) = \left\{ {f^{(j)} \left( {x_i } \right)\left( {j = 0, ..., \gamma _i - 1; i = 1, ..., n; 1 \leqq \gamma _i \leqq r; \gamma _i + ... + \gamma _n \leqq N} \right.} \right\},$$ оптимальные на класс ахW p r ,r=1,2,...; 1≦p≦∞. Это позволило, в частност и, получить наилучшие для классаW p r квадратурные форму лы вида $$\mathop \smallint \limits_0^1 f\left( x \right)dx = \mathop \Sigma \limits_{i = 1}^n \mathop \Sigma \limits_{j = 1}^{\gamma _i - 1} a_{ij} f^{(j)} \left( {x_i } \right) + \mathop \Sigma \limits_{j = 1}^{[{r \mathord{\left/ {\vphantom {r 2}} \right. \kern-\nulldelimiterspace} 2}]} b_j f^{(2j - 1)} \left( 0 \right) + \mathop \Sigma \limits_{k = 1}^{[{r \mathord{\left/ {\vphantom {r 2}} \right. \kern-\nulldelimiterspace} 2}]} c_k f^{(2k - 1)} \left( 1 \right) + R\left( f \right)$$ И $$\mathop \smallint \limits_0^1 f\left( x \right)dx = af\left( 0 \right) + \mathop \Sigma \limits_{i = 1}^n \mathop \Sigma \limits_{j = 0}^{\gamma _i - 1} a_{ij} f^{(j)} \left( {x_i } \right) + bf\left( 1 \right) + \mathop \Sigma \limits_{j = 1}^{[{r \mathord{\left/ {\vphantom {r 2}} \right. \kern-\nulldelimiterspace} 2}]} b_j f^{(2j - 1)} \left( 0 \right) + \mathop \Sigma \limits_{k = 1}^{[{r \mathord{\left/ {\vphantom {r 2}} \right. \kern-\nulldelimiterspace} 2}]} c_k f^{(2k - 1)} \left( 1 \right) + R\left( f \right).$$   相似文献   

7.
Let
  相似文献   

8.
В работе для неотрица тельных последовате льностей (...,a ?1 i ), aa 0 i ),a 1 i ), ...), удовлетв оряющих условию \(0< \mathop {\sup }\limits_k a_k^{(i)}< \infty\) (i=1,...,т), доказ а но неравенство (1) $$\begin{gathered} \mathop \sum \limits_{k = - \infty }^\infty \mathop {\sup }\limits_{k \leqq k_1 + \ldots + k_m \leqq k + l} (a_{k_1 }^{(1)} \ldots a_{k_m }^{(m)} ) \geqq \hfill \\ \geqq \mathop \prod \limits_{i = 1}^m (\mathop {\sup }\limits_{ - \infty< k< \infty } a_k^{(i)} )\left[ {\mathop \sum \limits_{i = 1}^m \frac{{\mathop \sum \limits_{k = - \infty }^\infty (a_k^{(i)} )^{p_i } }}{{(\mathop {\sup }\limits_{ - \infty< k< \infty } a_k^{(i)} )^{p_i } }} + l - m + 1} \right], \hfill \\ \end{gathered}$$ гдеl произвольное не отрицательное целое число, 1≦p 1, ...,p m ≦∞ и \(\mathop \sum \limits_{i = 1}^m p_i^{ - 1} = 1\) . Это неравенство явля ется обобщением и уто чнением неравенств А. Прекопа, Ш. Данча и Л. Лейндлера. Доказано также, что ес ли все последователь ности содержат только коне чное число ненулевых членов, то н еобходимым условием для равенства в (1) является существование такого числа α>0, чтоa k( i )=а илиa k( i )=0 для всехi=1,...,m;?∞<k<∞.  相似文献   

9.
We consider an eigenvalue problem for a system on [0, 1]: $$\left\{ {\begin{array}{*{20}l} {\left[ {\left( {\begin{array}{*{20}c} 0 & 1 \\ 1 & 0 \\ \end{array} } \right)\frac{{\text{d}}} {{{\text{d}}x}} + \left( {\begin{array}{*{20}c} {p_{11} (x)} & {p_{12} (x)} \\ {p_{21} (x)} & {p_{22} (x)} \\ \end{array} } \right)} \right]\left( {\begin{array}{*{20}c} {\varphi ^{(1)} (x)} \\ {\varphi ^{(2)} (x)} \\ \end{array} } \right) = \lambda \left( {\begin{array}{*{20}c} {\varphi ^{(1)} (x)} \\ {\varphi ^{(1)} (x)} \\ \end{array} } \right)} \\ {\varphi ^{(2)} (0)\cosh \mu - \varphi ^{(1)} (0)\sinh \mu = \varphi ^{(2)} (1)\cosh \nu + \varphi ^{(1)} (1)\sinh \nu = 0} \\ \end{array} } \right.$$ with constants $$\mu ,\nu \in \mathbb{C}.$$ Under the assumption that p21, p22 are known, we prove a uniqueness theorem and provide a reconstruction formula for p11 and p12 from the spectral characteristics consisting of one spectrum and the associated norming constants.  相似文献   

10.
The present paper proves that if f(x) ∈ C[0,1], changes its sign exactly l times at 0 < y1 < y2 <y1<1 in(0,1),then there exists a pn (x)пn( ),such that |f(x)-p(x)/pn(x)|≤ Cωφ(f,n-1/2),where ρ(x) is defined by ρ(x)=l∏i=1(x - yi), if f(x) ≥ 0 for x ∈ (yl, 1),-1∏i=1(x-yi), iff(x) < 0 for x ∈ (y1,1).which improves and generalizes the result of [7].  相似文献   

11.
The modified Bernstein-Durrmeyer operators discussed in this paper are given byM_nf≡M_n(f,x)=(n+2)P_(n,k)∫_0~1p_n+1.k(t)f(t)dt,whereWe will show,for 0<α<1 and 1≤p≤∞  相似文献   

12.
Let C(Q) denote the space of continuous functions f(x, y) in the square Q = [?1, 1] × [?1, 1] with the norm $\begin{gathered} \left\| f \right\| = \max \left| {f(x,y)} \right|, \hfill \\ (x,y) \in Q. \hfill \\ \end{gathered} $ On a Chebyshev grid, a cubature formula of the form $\int\limits_{ - 1}^1 {\int\limits_{ - 1}^1 {\frac{1} {{\sqrt {(1 - x^2 )(1 - y^2 )} }}f(x,y)dxdy = \frac{{\pi ^2 }} {{mn}}\sum\limits_{i = 1}^n {\sum\limits_{j = 1}^m {f\left( {\cos \frac{{2i - 1}} {{2n}}\pi ,\cos \frac{{2j - 1}} {{2m}}\pi } \right)} + R_{m,n} (f)} } } $ is considered in some class H(r 1, r 2) of functions f ?? C(Q) defined by a generalized shift operator. The remainder R m, n (f) is proved to satisfy the estimate $\mathop {\sup }\limits_{f \in H(r_1 ,r_2 )} \left| {R_{m,n} (f)} \right| = O(n^{ - r_1 + 1} + m^{ - r_2 + 1} ), $ where r 1, r 2 > 1; ???1 ?? n/m ?? ?? with ?? > 0; and the constant in O(1) depends on ??.  相似文献   

13.
Assume that the coefficients of the series $$\mathop \sum \limits_{k \in N^m } a_k \mathop \Pi \limits_{i = 1}^m \sin k_i x_i $$ satisfy the following conditions: a) ak → 0 for k1 + k2 + ...+km →∞, b) \(\delta _{B,G}^M (a) = \mathop {\mathop \sum \limits_{k_i = 1}^\infty }\limits_{i \in B} \mathop {\mathop \sum \limits_{k_j = 2}^\infty }\limits_{j \in G} \mathop {\mathop \sum \limits_{k_v = 0}^\infty }\limits_{v \in M\backslash (B \cup G)} \mathop \Pi \limits_{i \in B} \frac{1}{{k_i }}|\mathop \sum \limits_{I_j = 1}^{[k_j /2]} (\nabla _{l_G }^G (\Delta _1^{M\backslash B} a_k ))\mathop \Pi \limits_{j \in G} l_j^{ - 1} |< \infty ,\) for ∨B?M, ∨G?M,BG, where M={1,2, ...,m}, $$\begin{gathered} \,\,\,\,\,\,\,\,\,\,\,\,\Delta _1^j a_k = a_k - a_{k_{M\backslash \{ j\} } ,k_{j + 1} } ,\Delta _1^B a_k = \Delta _1^{B\backslash \{ j\} } (\Delta _1^j a_k ), \hfill \\ \Delta _{l_j }^j a_k = a_{k_{M\backslash \{ j\} } ,k_j - l_j } - a_{k_{M\backslash \{ j\} } ,k_j + l_j } ,\nabla _{l_G }^G a_k = \nabla _{l_{G\backslash \{ j\} } }^{G\backslash \{ j\} } (\nabla _{l_j }^j a_k ). \hfill \\ \end{gathered} $$ Then for all n∈Nm the following asymptotic equation is valid: $$\mathop \smallint \limits_{{\rm T}_{\pi /(2n + 1)}^m } |\mathop \sum \limits_{k \in N^m } a_k \mathop \Pi \limits_{i \in M} \sin k_i x_i |dx = \mathop \sum \limits_{k = 1}^n \left| {a_k } \right|\mathop \Pi \limits_{i \in M} k^{ - 1} + O(\mathop {\mathop \sum \limits_{B,{\mathbf{ }}G \subset M} }\limits_{B \ne M} \delta _{B,G}^M (a)).$$ Here \(T_{\pi /(2n + 1)}^m = \left\{ {x = (x1,x2,...,xm):\pi /(2n + 1) \leqq xi \leqq \pi ;i = \overline {1,m} } \right\}\) . In the one-dimensional case such an equation was proved by S. A. Teljakovskii.  相似文献   

14.
In the present paper, we give the explicit formula of the principal part of n ∑ k=0 ([k]q -[n]qx)sxk n-k-1 ∏ m=0 (1-qmx) with respect to [n]q for any integer s and q ∈ (0,1]. And, using the expressions, we obtain saturation theorems for Bn(f,qn;x) approximating to f(x) ∈ C[0,1], 0 < qn ≤ 1, qn → 1.  相似文献   

15.
Letx be a point such that its expansion by Jacobi's algorithm does not possess “Störungen” (in the sense ofPerron). Let $$F(x,g) = \frac{{A_{_0 }^{(g + n + 1)} + \sum\limits_{j = 1}^n {A_0^{(g + j)} x_j^{(g)} } }}{{A_{_0 }^{(g + 1)} }}$$ and let ξ>1 satisfy ξn+1=ξn+1. Then at least one of 2n+1 consecutive values of g satisfiesF(x,g) > ξn+nξn?1.  相似文献   

16.
Пустьw(х)∈L[-1, +1] — неотрица тельная функция така я, что $$\frac{{\log ^ + \frac{1}{{w(x)}}}}{{\sqrt {1 - x^2 } }} \in L[ - 1, + 1]$$ и пусть {(р n (х)} — много члены, ортогональные и нормированные с весо мw(x). Мы доказываем следующие две теорем ы, являющиеся обобщен ием одного известного результа та Н. Винера. I. Для каждого δ, 0<δ<1, суще ствует числоB=B(δ, w) тако е, что если $$f_N (x) = \sum\limits_{j = 1}^N {a_j p_{v_j } (x)} $$ причем выполнено сле дующее условие лакун арности $$\begin{gathered} v_{j + 1} - v_j \geqq B(\delta ,w) (j = 1,2,...,N - 1), \hfill \\ v_1 \geqq B(\delta ,w) \hfill \\ \end{gathered} $$ , то для некоторого С(δ, w) и всехh и δ, для которых $$ - 1 \leqq h - \delta< h + \delta \leqq + 1$$ , имеет место неравенс тво $$\int\limits_{ - 1}^1 {|f_N (x)|^2 w(x)dx \leqq C(\delta ,w)} \int\limits_{h - \delta }^{h + \delta } {|f_N (x)|^2 w(x)dx} $$ каковы бы ни былиa j ,N и h. II. Если формальный ряд $$\sum\limits_{j = 1}^\infty {b_j p_{\mu _j } (x)} $$ удовлетворяет услов ию лакунарности μj+1j→∞ и суммируем, например, м етодом Абеля на произвольно малом отрезке [а, Ь] ?[0,1] к ф ункцииf(x) такой, что \(f(x)\sqrt {w(x)} \in L_2 [a,b]\) , то $$\sum\limits_j {|b_j |^2< \infty } $$ Теорема I — это первый ш аг в направлении проб лемы типа Мюнтца-Саса о замкнут ости подпоследовательно сти pvj(x)} последовател ьности {рn(х)} на отрезке [а, Ь] в метрике С[а, Ь] (см. теорему II стать и).  相似文献   

17.
Let q, h, a, b be integers with q > 0. The classical and the homogeneous Dedekind sums are defined by $$s(h,q) = \sum\limits_{j = 1}^q {\left( {\left( {{j \over q}} \right)} \right)\left( {\left( {{{hj} \over q}} \right)} \right),{\rm{ }}s(a,b,q) = \sum\limits_{j = 1}^q {\left( {\left( {{{aj} \over q}} \right)} \right)\left( {\left( {{{bj} \over q}} \right)} \right),} } $$ respectively, where $((x)) = \left\{ \begin{gathered} x - [x] - \tfrac{1} {2},if x is not an integer; \hfill \\ 0,if x is an integer. \hfill \\ \end{gathered} \right. $ The Knopp identities for the classical and the homogeneous Dedekind sum were the following: $$\sum\limits_{d|n} {\sum\limits_{r = 1}^d {s\left( {{n \over d}a + rq,dq} \right) = \sigma (n)s(a,q),} } $$ $$\sum\limits_{d|n} {\sum\limits_{{r_1} = 1}^d {\sum\limits_{{r_2} = 1}^d s \left( {{n \over d}a + {r_1}q,{n \over d}b + {r_2}q,dq} \right) = n\sigma (n)s(a,b,q),} } $$ where σ(n) =Σ d|n d. In this paper generalized homogeneous Hardy sums and Cochrane-Hardy sums are defined, and their arithmetic properties are studied. Generalized Knopp identities for homogeneous Hardy sums and Cochrane-Hardy sums are given.  相似文献   

18.
Every symmetric polynomial p = p(x) = p(x 1,..., x g ) (with real coefficients) in g noncommuting variables x 1,..., x g can be written as a sum and difference of squares of noncommutative polynomials:
$ (SDS) p(x) = \sum\limits_{j = 1}^{\sigma _ + } {f_j^ + (x)^T f_j^ + (x)} - \sum\limits_{\ell = 1}^{\sigma _ - } {f_\ell ^ - (x)^T f_\ell ^ - (x)} , $ (SDS) p(x) = \sum\limits_{j = 1}^{\sigma _ + } {f_j^ + (x)^T f_j^ + (x)} - \sum\limits_{\ell = 1}^{\sigma _ - } {f_\ell ^ - (x)^T f_\ell ^ - (x)} ,   相似文献   

19.
Leta 1,...,a p be distinct points in the finite complex plane ?, such that |a j|>1,j=1,..., p and let \(b_j = 1/\bar \alpha _j ,\) j=1,..., p. Let μ0, μ π (j) , ν π (j) j=1,..., p;n=1, 2,... be given complex numbers. We consider the following moment problem. Find a distribution ψ on [?π, π], with infinitely many points of increase, such that $$\begin{array}{l} \int_{ - \pi }^\pi {d\psi (\theta ) = \mu _0 ,} \\ \int_{ - \pi }^\pi {\frac{{d\psi (\theta )}}{{(e^{i\theta } - a_j )^n }} = \mu _n^{(j)} ,} \int_{ - \pi }^\pi {\frac{{d\psi (\theta )}}{{(e^{i\theta } - b_j )^n }} = v_n^{(j)} ,} j = 1,...,p;n = 1,2,.... \\ \end{array}$$ It will be shown that this problem has a unique solution if the moments generate a positive-definite Hermitian inner product on the linear space of rational functions with no poles in the extended complex plane ?* outside {a 1,...,a p,b 1,...,b p}.  相似文献   

20.
This note is a study of approximation of classes of functions and asymptotic simultaneous approximation of functions by theM n -operators of Meyer-König and Zeller which are defined by $$(M_n f)(x) = (1 - x)^{n + 1} \sum\limits_{k = 0}^\infty {f\left( {\frac{k}{{n + k}}} \right)} \left( \begin{array}{l} n + k \\ k \\ \end{array} \right)x^k , n = 1,2,....$$ Among other results it is proved that for 0<α≤1 $$\mathop {\lim }\limits_{n \to \infty } n^{\alpha /2} \mathop {\sup }\limits_{f \in Lip_1 \alpha } \left| {(M_n f)(x) - f(x)} \right| = \frac{{\Gamma \left( {\frac{{\alpha + 1}}{2}} \right)}}{{\pi ^{1/2} }}\left\{ {2x(1 - x)^2 } \right\}^{\alpha /2} $$ and if for a functionf, the derivativeD m+2 f exist at a pointx∈(0, 1), then $$\mathop {\lim }\limits_{n \to \infty } 2n[D^m (M_n f) - D^m f] = \Omega f,$$ where Ω is the linear differential operator given by $$\Omega = x(1 - x)^2 D^{m + 2} + m(3x - 1)(x - 1)D^{m + 1} + m(m - 1)(3x - 2)D^m + m(m - 1)(m - 2)D^{m - 1} .$$   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号