首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
用纳米SiO2颗粒与微量氨基酸型两性表面活性剂十二烷基氨基丙酸钠作复合乳化剂, 以正癸烷为油相, 制备了pH响应性O/W型Pickering乳状液. 室温下该乳状液在pH≤4.0 时稳定, 在pH≥6.0时不稳定, 因此, 可以通过改变水相的pH值使乳状液在稳定和破乳之间多次循环. 在酸性水介质中, 氨基酸型两性表面活性剂分子呈阳离子状态, 可通过静电作用吸附到带负电荷的SiO2颗粒表面, 产生原位疏水化作用, 使其转变为表面活性颗粒; 而在中性和碱性水介质中, 氨基酸型两性表面活性剂呈两性或阴离子状态, 不能产生原位疏水化作用, 因而导致乳状液破乳. 相关作用机理通过吸附量、 Zeta电位及接触角等实验数据得以论证. 该刺激-响应性Pickering乳状液在乳液聚合、 油品输送以及燃料生产等领域具有重要的应用价值.  相似文献   

2.
The affinity of weak polyelectrolyte coated oxide particles to the oil-water interface can be controlled by the degree of dissociation and the thickness of the weak polyelectrolyte layer. Thereby the oil in water (o/w) emulsification ability of the particles can be enabled. We selected the weak polyacid poly(methacrylic acid sodium salt) and the weak polybase poly(allylamine hydrochloride) for the surface modification of oppositely charged alumina and silica colloids, respectively. The isoelectric point and the pH range of colloidal stability of both particle-polyelectrolyte composites depend on the thickness of the weak polyelectrolyte layer. The pH-dependent wettability of a weak polyelectrolyte-coated oxide surface is characterized by contact angle measurements. The o/w emulsification properties of both particles for the nonpolar oil dodecane and the more polar oil diethylphthalate are investigated by measurements of the droplet size distributions. Highly stable emulsions can be obtained when the degree of dissociation of the weak polyelectrolyte is below 80%. Here the average droplet size depends on the degree of dissociation, and a minimum can be found when 15 to 45% of the monomer units are dissociated. The thickness of the adsorbed polyelectrolyte layer strongly influences the droplet size of dodecane/water emulsion droplets but has a less pronounced impact on the diethylphthalate/water droplets. We explain the dependency of the droplet size on the emulsion pH value and the polyelectrolyte coating thickness with arguments based on the particle-wetting properties, the particle aggregation state, and the oil phase polarity. Cryo-SEM visualization shows that the regularity of the densely packed particles on the oil-water interface correlates with the degree of dissociation of the corresponding polyelectrolyte.  相似文献   

3.
Grafting of biocompatible polymer onto the surface of silica nanoparticles was achieved by radical graft polymerization of 2-methacryloyloxyethyl phosphorylcholine (MPC), initiated by azo groups previously introduced onto the surface or by a system consisting of Mo(CO)6 and trichloroacetyl groups on the silica surface. Both of these systems have the ability to initiate graft polymerization of MPC, resulting in the formation of poly(MPC)-grafted silica, but the percentage of poly(MPC) grafting for the latter initiating system was much higher than that of the former. The amount of moisture that could be adsorbed onto the silica surface was found to increase with increasing poly(MPC) grafting. This indicates that grafting of poly(MPC) onto the silica surface markedly increases the hydrophilic nature of the surface. The contact angle of water in composites prepared from poly(vinyl alcohol) and poly(MPC)-grafted silica was found to decrease with increasing poly(MPC)-grafted silica content. When poly(MPC)-grafted silica was added to water containing a small amount of chloroform, it was found to act as stabilizer for droplets of chloroform. In addition, according to tests by the Lee-White method, poly(MPC)-grafted silica shows non-thrombogenic characteristics.  相似文献   

4.
Water-in-oil, high internal phase emulsion made of super-cooled aqueous solution containing a mixture of inorganic salts and stabilized with non-ionic surfactant (sorbitan monooleate) alone was investigated. It was not possible to produce a highly concentrated emulsion (with aqueous phase fraction = 94 wt %), stabilized with surface-treated silica, solely: we were able to form an emulsion with a maximal aqueous phase mass fraction of 85 wt % (emulsion inverts/breaks above this concentration). The inversion point is dependent on the silica particle concentration, presence of salt in the aqueous phase, and does not depend on the pH of the dispersed phase. All emulsions stabilized by the nanoparticles solely were unstable to shear. So, the rheological properties and stability of the emulsions containing super-cooled dispersed phase, with regards to crystallization, were determined for an emulsion stabilized by non-ionic surfactant only. The results were compared to the properties obtained for emulsions stabilized by surface treated (relatively hydrophobic) silica nanoparticles as a co-surfactant to sorbitan monooleate. The influence of the particle concentration, type of silica surface treatment, particle/surfactant ratio on emulsification and emulsion rheological properties was studied. The presence of the particles as a co-stabilizer increases the stability of all emulsions. Also, it was found that the particle/surfactant ratio is important since the most stable emulsions are those where particles dominate over the surfactant, when the surfactant’s role is to create bridging flocculation of the particles. The combination of the two types of hydrophobic silica particles as co-surfactants is: one that resides at the water/oil interface and provides a steric boundary and another that remains in the oil phase creating a 3D-network throughout the oil phase, which is even more beneficiary in terms of the emulsion stability.  相似文献   

5.
In this work, we present the first Pickering emulsion polymerization with a controlled/living character. Pickering emulsion polymerization in the presence of a novel suspension of zinc oxide/poly(sodium 4‐styrenesulfonate) (ZnO/PSS?) nanocomposite particles was applied to prepare ZnO/living block copolymer latexes. In the emulsion system, 1,1‐diphenylethene (DPE)‐controlled radical polymerization of poly(methyl methacrylate)‐b‐poly(butyl acrylate) (PMMA‐b‐PBA) was proceeded in oil phase. The nanocomposite particles of ZnO/PSS? with an average diameter of 20 nm and negatively charged zeta potential around ?30 mV were synthesized via hydrothermal method then served as an effective emulsion stabilizer at the oil/water interface. Living polymerization was carried out using DPE‐capped PMMA as the macroinitiator and PMMA‐b‐PBA block copolymer latex was successfully prepared with coverage of ZnO/PSS? nanoparticles. Narrow size distributions of the droplets as well as latex particles were obtained, and the livingness of block copolymers was comparable to that of emulsions stabilized by conventional surfactants. The controlled/living character in Pickering emulsion polymerization was slightly influenced by the amount of PSS? immobilized into the ZnO/PSS? nanoparticles, whereas it was significantly influenced by the weight ratios between ZnO/PSS? and oil phase. The Pickering latexes showed excellent long term stability against either coalescence or sedimentation over several months. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

6.
The influence of the surface functionalization of silica particles on their colloidal stability in physiological media is studied and correlated with their uptake in cells. The surface of 55 ± 2 nm diameter silica particles is functionalized by amino acids or amino- or poly(ethylene glycol) (PEG)-terminated alkoxysilanes to adjust the zeta potential from highly negative to positive values in ethanol. A transfer of the particles into water, physiological buffers, and cell culture media reduces the absolute value of the zeta potential and changes the colloidal stability. Particles stabilized by L-arginine, L-lysine, and amino silanes with short alkyl chains are only moderately stable in water and partially in PBS or TRIS buffer, but aggregate in cell culture media. Nonfunctionalized, N-(6-aminohexyl)-3-aminopropyltrimethoxy silane (AHAPS), and PEG-functionalized particles are stable in all media under study. The high colloidal stability of positively charged AHAPS-functionalized particles scales with the ionic strength of the media, indicating a mainly electrostatical stabilization. PEG-functionalized particles show, independently from the ionic strength, no or only minor aggregation due to additional steric stabilization. AHAPS stabilized particles are readily taken up by HeLa cells, likely as the positive zeta potential enhances the association with the negatively charged cell membrane. Positively charged particles stabilized by short alkyl chain aminosilanes adsorb on the cell membrane, but are weakly taken up, since aggregation inhibits their transport. Nonfunctionalized particles are barely taken up and PEG-stabilized particles are not taken up at all into HeLa cells, despite their high colloidal stability. The results indicate that a high colloidal stability of nanoparticles combined with an initial charge-driven adsorption on the cell membrane is essential for efficient cellular uptake.  相似文献   

7.
Surface modification of colloidal silica with ferrocenyl-grafted polymer and colloidal crystallization of the particles in organic solvent were studied. Poly(methyl methacrylate-co-vinylferrocene)-grafted silica never formed colloidal crystals in polar solvent, such as acetone, acetonitrile, ethanol and N,N-dimethylformamide (DMF), while poly(methyl methacrylate-co-ferrocenyl acrylate)-grafted silica gave colloidal crystallization in DMF. The particles prepared by grafting of poly(N,N-dimethylacrylamide-co-vinylferrocene), with vinylferrocene (Vfc) mole fraction of 1/13 and 1/23, were observed to give the crystallization in ethanol and DMF over particle volume fraction of 0.058. Further, silica modified with copolymer of Vfc and N-vinyl-2-pyrrolidone, N-vinylcarbazole or N-isopropylacrylamide formed colloidal crystals in ethanol and DMF. Especially, poly(N-isopropylacrylamide-co-Vfc)-grafted silica, which was composed of the highest mole fraction of vinylferrocene, 1/3, afforded colloidal crystallization in ethanol over particle volume fraction of 0.053. Relatively high polar vinylferrocene copolymer grafting of silica resulted in colloidal polymerization in organic solvents.  相似文献   

8.
单分散聚丙烯酸丁酯-二氧化硅核壳粒子的制备   总被引:3,自引:0,他引:3  
近年来,有机-无机核壳材料因其具有可调的光、电、磁等特性而备受关注.无机物外壳可以增强粒子的热力学稳定性、机械强度和抗拉性能.高分子乳胶粒内核具有弹性,且易成膜,外部包覆无机物的乳胶粒可结合两者特性并产生协同效应.  相似文献   

9.
研究了3种不同结构的水溶性阳离子表面活性剂对纳米二氧化硅颗粒的原位表面活性化作用, 它们分别是单头单尾的十六烷基三甲基溴化铵(CTAB)、单头双尾的双十二烷基二甲基溴化铵(di-C12DMAB)和双头双尾的Gemini型阳离子三亚甲基-二(十四酰氧乙基溴化铵)(II-14-3), 并通过测定Zeta电位、吸附等温线及接触角等参数对相关机理进行了阐述. 结果表明, 阳离子表面活性剂吸附到颗粒/水界面形成以疏水基朝向水的单分子层, 从而增强了颗粒表面的疏水性是原位表面活性化的基础. 通过吸附CTAB和II-14-3, 颗粒的疏水性适当增强, 能吸附到正辛烷/水界面稳定O/W(1)型乳状液; 而通过吸附di-C12DMAB所形成的单分子层更加致密, 颗粒的疏水性进一步增强, 进而使乳状液从O/W(1)型转变为W/O型; 当表面活性剂浓度较高时, 由于链-链相互作用, 表面活性剂分子将在颗粒/水界面形成双层吸附, 使颗粒表面变得亲水而失去活性, 但此时体系中游离表面活性剂的浓度已增加到足以单独稳定O/W(2)型乳状液的程度. 因此当采用纳米二氧化硅和di-C12DMAB的混合物作乳化剂时, 通过增加di-C12DMAB的浓度即可诱导乳状液发生O/W(1)→W/O→O/W(2)双重相转变.  相似文献   

10.
Ellipsoidal trilayer hematite/silica/poly(divinylbenzene) hybrid particles were prepared by distillation precipitation polymerization of divinyl benzene (DVB) in the presence of hematite/3-(methacryloxy)propyl trimethoxysilane (MPS)-modified silica (SiO(2)) core-shell particles as the seeds. The polymerization of DVB was performed in neat acetonitrile with 2,2'-azobisisobtyronitrile (AIBN) as initiator to coat the hematite/MPS-modified SiO(2) seeds through the capture of DVB oligomer radicals with the aid of a vinyl group on the surface of the hematite/MPS-modified silica core-shell particles in the absence of any stabilizer or surfactant. The other hematite/silica/polymer trilayer hybrid particles with different polarity and various functionality, such as hematite/silica/poly(ethylene glycol dimethacrylate) and hematite/silica/poly(divinyl benzene- co-methacrylic acid) could also be prepared by this procedure. Hematite/silica/poly( N, N'-methylenebisacrylamide) composite particles could be prepared with unmodified hematite/silica particles as seeds. Hollow poly(divinyl benzene) (PDVB) and poly( N, N'-methylenebisacrylamide) (PMBAAm) ellipsoids with movable hematite cores were subsequently developed after the selective etching of the silica midlayer in diluted hydrofluoric acid from hematite/silica/PDVB and hematite/silica/PMBAAm trilayer hybrids. Hollow PDVB ellipsoids were obtained by removal of the silica midlayer and hematite core of the trilayer hybrids with concentrated HF solution. The resultant trilayer hybrid particles and hollow polymer ellipsoids were characterized by transmission electron microscopy and vibrating sample magnetometer.  相似文献   

11.
A novel method is proposed to create asymmetrically nanoparticle-supported, monodisperse composite dumbbells. The method consists of the three steps of double soap-free emulsion polymerizations before and after a heterocoagulation. In the first step, soap-free emulsion polymerization was conducted to cover silica cores with cross-linked poly(methyl methacrylate) (PMMA) shells. Then, positively or negatively charged silica nanoparticles were heterocoagulated with the silica-PMMA core-shell particles. In the heterocoagulations, the nanoparticles surface-modified with a cationic silane coupling agent, 3-aminopropyltriethoxysilane, were used as the positively charged ones, and silica nanoparticles without any treatment were used as the negatively charged ones. In the third step, soap-free polymerizations at different pH values were performed to protrude a polystyrene (PSt) bulge from the core-shell particles supporting the charged silica nanoparticles. In the polymerization, the core-shell particles heterocoagulated with the positively charged silica nanoparticles were aggregated in an acidic condition whereas the silica nanoparticles supported on the core-shell particles were dissolved in a basic condition. For the negatively charged silica nanoparticle, a PSt bulge was successfully protruded from the core-shell particle in acidic and neutral conditions without aggregation of the core-shell particles. The protrusion of the PSt bulge became distinctive when the number of heterocoagulated silica nanoparticles per core-shell particle was increased. Additional heterocoagulation experiments, in which positively or negatively charged magnetite nanoparticles were mixed with the asymmetrically nanoparticle-supported composite dumbbells, confirmed direct exposure of silica nanoparticles to the outer solvent phase.  相似文献   

12.
A magnetic oil in water (o/w) emulsion was cationized by adsorption of poly(ethyleneimine) (PEI). In a subsequent step, the cationic particles were derivatized with partially hydrolyzed poly(maleic anhydride-alt-methyl vinyl ether) copolymer (PMAMVE) to lead negatively charged colloids. The experimental conditions for the covalent grafting of the PMAMVE were selected on the basis of colloidal stability, charge inversion and absence of inhibition of the enzymatic DNA/RNA amplification reactions. Once the experimental conditions were selected, oligonucleotides (ODN) bearing particles were obtained according to the sequential process: (i) grafting of single stranded ODNs onto PMAMVE; (ii) grafting of the PMAMVE-ODN conjugates onto the cationic particles according to the conditions defined above. In this strategy, both steps could be independently controlled. The ODN-PMAMVE-particles conjugates were very stable with time, did not inhibit RT-PCR and were capable of hybridizing specifically with the complementary target.  相似文献   

13.
Colloidal particles of poly(styrene-co-sodium 1-allyloxy- 2-hydroxypropane sulfonate) with diameters of 508 ∼ 596 nm were synthesized by emulsifier-free emulsion copolymerization, crosslinked with divinylbenzene, and initiated by potassium persulfate/sodium bisulfite in a mixed solvent of water and acetone. The diameters of the submicrometer-sized particles were measured by dynamic light scattering (DLS) and scanning electron microscopy (SEM). The surface charge densities of the particles were determined by condutometric titration. The results showed that the highly surface charged monodispersed submicrometer-sized particles were obtained by two-stage shot growth polymerization. The particle diameters could be reduced and controlled by adding suitable amount of acetone.  相似文献   

14.
Janus particles endowed with controlled anisotropies represent promising building blocks and assembly materials because of their asymmetric functionalities. Herein, we show that using the seeded monomer swelling and polymerization technique allows us to obtain bi‐compartmentalized Janus microparticles that are generated depending on the phase miscibility of the poly (alkyl acrylate) chains against the polystyrene seed, thus minimizing the interfacial free energy. When tetradecyl acrylate is used, complete compartmentalization into two distinct bulbs can be achieved, while tuning the relative dimension ratio of compartmented bulb against the whole particle. Finally, we have demonstrated that selectively patching the silica nanoparticles onto one of the bulb surfaces gives amphiphilicity to the particles that can assemble at the oil–water interface with a designated level of adhesion, thus leading to development of a highly stable Pickering emulsion system.  相似文献   

15.
The guanidine group-modified silica particles were used as emulsifier to obtain a CO2-responsive Pickering emulsion. To compare the wettability effect of the particles on the stability of the emulsion, both guanidine and alkyl chain were attached on the surface of silica particles. The influences of tension, particles concentration, oil-water fraction, NaCl concentration, and CO2 on Pickering emulsion properties were investigated. Although the particles did not decrease the surface and interfacial tensions of the air/oil-water interfaces, they attached on the oil–water interfaces and stabilized the emulsions at room temperature for at least 4 weeks. Addition of salt increased the emulsion stability and induced phase inversion at high salt concentration. The stabilization–destabilization cycles of the emulsion could be successively controlled by alternative CO2/heating triggers due to the protonation-deprotonation of guanidine groups on the particle surfaces.  相似文献   

16.
Pickering乳液模板法制备Janus粒子   总被引:4,自引:0,他引:4  
本文以SiO2粒子稳定的水包油(O/W)型Pickering乳液作为模板, 在乳液连续相进行SI-ATRP, 将聚合物刷接枝到SiO2粒子外半表面, 破乳得到半修饰的Janus粒子.  相似文献   

17.
Studies show that after acidizing operation of oil wells using the alkali/surfactant/polymer (ASP) flooding technology, the produced fluid is emulsified. Since the produced emulsion is stable, it affects the oil–water separation performance. In order to analyze the generation of stable emulsion in the produced fluid after acidizing an oil well, innovative separation experiments were carried out on real oil wells. During the experiments, solid particles in the middle layer of the emulsifying system in the produced fluid after acidizing ASP flooding were extracted and characterized. The generation of the stable emulsifying system in the produced fluid was studied through stability experiments and molecular dynamics simulations. The results showed that the synergistic effect of ferrous sulfide nanoparticles and surfactants was the fundamental reason for the strong emulsifying stability of the produced liquid after acidizing of the ternary composite system. The generation of ferrous sulfide solid particles mainly included two steps. First, sulfate reducing bacteria in injected water by ASP flooding reacted with sulfate in formation water to form hydrogen sulfide. Then, the hydrogen sulfide reacted with iron metal in oil wells and casing of wellbore to form ferrous sulfide particles. It was found that surfactants are adsorbed on the surface of ferrous sulfide nanoparticles. Subsequently, the control ability of surfactant on oil and water phases in the liquid film was enhanced. The performed analyses demonstrate that the adsorption of solid particles to the oil phase was enhanced, while the free motion of molecules in the oil phase at the liquid film position was weakened. The strength of the interfacial film between oil and water was further increased by the synergistic effect of ferrous sulfide nanoparticles and surfactant. The present study is expected to provide a guideline for a better understanding of the efficient treatment of produced fluids in ASP flooding.  相似文献   

18.
Herein, we report on the synthesis of film-forming poly(styrene-co-butyl acrylate-co-acrylic acid)/SiO2 [P(St-BA-AA)/SiO2] nanocomposites by in situ formation of SiO2 nanoparticles from TEOS via sol–gel process in the presence of poly(acrylic acid) (PAA)-functionalized poly(styrene-co-butyl acrylate) [P(St-BA)] particles fabricated by soap-free emulsion polymerization. The formed silica particles could be absorbed by polyacrylate chains on the surface of PAA-functionalized P(St-BA) particles; thus, raspberry-like polymer/silica nanocomposites would be obtained. Transmission electron microscopy, Fourier transform infrared spectroscopy, attenuated total reflectance infrared spectrum, ultraviolet–visible transmittance spectra, and thermogravimetric analysis were used to characterize the resulting composites. The results showed that the hybrid polymer/silica had a raspberry-like structure with silica nanoparticles anchored on the surface of polymer microspheres. The thermal, fire retardant, and mechanical properties and water resistance of the film were improved by incorporating silica nanoparticles, while the optical transmittance was seldom affected due to nanosized silica particles uniformly dispersed in the film.
Figure
Film-forming polymer/silica nanocomposites with raspberry-like morphology have been successfully prepared via soap-free emulsion polymerization followed by the sol–gel process. The number and the size of SiO2 particles coated on the surface of polymer particles can be adjusted by the amounts of TEOS and ammonia. After the film formation of polymer/silica nanocomposites, silica nanoparticles are homogeneously dispersed within the film without aggregation.  相似文献   

19.
采用原位聚合法制备纳米SiO2/含氟丙烯酸酯共聚物复合乳液,研究了其聚合反应动力学,并通过红外光谱(IR)、透射电子显微镜(TEM)、热失重(TGA)等方法表征所得产物的结构及形态、乳胶膜的耐热性能和表面性能.研究结果显示,聚合反应的表观活化能为83.15 kJ/mol,纳米SiO2/含氟丙烯酸酯共聚物复合粒子呈现出明显的核壳结构,纳米SiO2粒子的引入不仅改善了聚合物的耐热性能,也在一定程度上提高了乳胶膜的抗水性.对膜表面自由能的组成分析表明,与一般含氟乳胶膜的表面自由能的情况相反,该乳胶膜的表面能是由较大的极性部分和较小的色散部分组成.  相似文献   

20.
Hydrophilic silica particles need to be hydrophobized to be encapsulated in a polymeric environment, which can be achieved by different methods. We report on the relationship between different hydrophobization techniques of silica and the final structure of poly(methyl methacrylate)/silica hybrid nanoparticles obtained by miniemulsion polymerization. Hydrophobization by cetyltrimethylammonium chloride (CTMA-Cl) uses the ionic interaction between the positively charged ammonium salt and the negatively charged silica surface, as shown by isothermal titration calorimetry. In this case, the interaction between polymer and silica surface needs to be enhanced, so 4-vinylpyridine (4-VP) was used as a co-monomer. Alternatively, the condensation reactions of 3-methacryloxypropyltrimethoxysilane (MPS) and octadecyltrimethoxysilane (ODTMS) were used to provide a covalent bond to the silica surface. The condensation reaction of the trimethoxysilane groups onto the silica surface was proven by Fourier transform infrared spectroscopy and thermogravimetric analysis. Hybrid nanoparticles were successfully formed with silica particles functionalized with the different functionalization agents. However, the structure of the resulting hybrid particles (i.e., the distribution of the silica particles within the polymer matrix) depends on the agent. The MPS-functionalized silica particles copolymerize with poly(methyl methacrylate), leading to a fixation of the silica particles inside the polymer and to a homogeneous distribution. The CTMA-Cl- and ODTMS-functionalized silica particles cannot copolymerize, but aggregate at the interface, leading to a Janus-like structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号