首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Device applications involving topological insulators (TIs) will require the development of scalable methods for fabricating TI samples with sub‐micron dimensions, high quality surfaces, and controlled compositions. Here we use Bi‐, Se‐, and Te‐bearing metalorganic precursors to synthesize TIs in the form of nanowires. Single crystal nanowires can be grown with compositions ranging from Bi2Se3 to Bi2Te3, including the ternary compound Bi2Te2Se. These high quality nanostructured TI compounds are suitable platforms for on‐going searches for Majorana fermions (Mourik et al., Science 336 , 1003 (2012) and Cook et al., Rev. B 86 , 155431 (2012) [1, 2]).

  相似文献   


2.
Today's micro‐ and nano‐fabrication is essentially two‐dimensional, with very limited possibilities of accessing the third dimension. The most viable way to mass‐fabricate functional structures at the nano‐scale, such as electronics or MEMS, with equal feature sizes in all directions, is by three‐dimensional self‐assembly. Up to now, three‐dimensional self‐assembly has mainly been restricted to crystals of polymer spheres. We report on two‐ and three‐dimensional self‐assembly of silicon cubes, levitated in a paramagnetic fluid. We demonstrate the benefits of templating and study the effect of a change in hydrophilicity of the cubes. These experiments bring us one step closer to three‐dimensional self‐assembly of anisotropic, semiconducting units, which is a crucial milestone in overcoming the scaling limits imposed by contemporary 2D microfabrication.

  相似文献   


3.
The α‐PbO2‐type TiO2 is synthesized under high‐pressure and high‐temperature environment and it shows higher photocatalytic activity as compared to rutile and anatase under UV irradiation. The reduction in α‐PbO2‐type TiO2 induces visible‐light photocatalytic activity. These results indicate that α‐PbO2‐type TiO2 is an important candidate material for use in a photocatalytic matrix.

  相似文献   


4.
This work demonstrates the formation of Ag fractals on top of a Ag:TiO2 thin film. The dendrite‐type objects emerged from a homogeneous and highly transparent Ag:TiO2 nanocomposite, via the mechanism of diffusion‐limited‐aggregation of Ag atoms, during heat‐treatment at 500 °C. A porous TiO2 matrix was also formed during this process, opening a wide range of possible applications, namely in sensing‐based ones, together with surface enhanced spectroscopies. Furthermore, fractals incorporate a wide range of shapes and spatial scales, inducing a potentially interesting optical response, over the whole visible range, presumably related with localized surface plasmon modes with very broad spectral distribution.

  相似文献   


5.
Structural, electronic and magnetic properties of Sr2FeOsO6 have been revisited by using the first‐principle calculations. Semiconducting behavior is reproduced. The band gap is 0.09 eV from generalized gradient approximation (GGA) and 0.30 eV by considering both SOC and U, a bit larger than the experimental observed 0.125 eV. In the C‐type antiferromagnetic configuration, spin frustration is found by analysing the magnetic exchange parameters, explaining the experimental observed magnetic complexity.

  相似文献   


6.
The recently reported MgAl2O4 tunnel barrier for the magnetic tunnel junctions (MTJs) is considered to be an alternative to the conventional MgO barrier, since a large tunnel magnetoresistance (TMR) ratio was obtained for the MgAl2O4‐based MTJs. In this study, we demonstrated large perpendicular magnetic anisotropy (PMA) arising from the interfaces of Fe(001)/MgAl2O4 layered structures, which can be useful for developing perpendicularly magnetized MgAl2O4‐based MTJs. A PMA energy density of 0.4 MJ/m3 was achieved for an epitaxially grown 0.7 nm thick Fe/MgAl2O4(001). Interestingly, the interface PMA was also obtained for the Fe/non‐epitaxially grown MgAl2O4 structures, which indicates that the crystallographic structure of MgAl2O4 layer has no critical influence on the obtained PMA.

  相似文献   


7.
By high‐throughput screening Fe–Sn–Cr, (Fe,Cr)3Sn2 (Fe53.5Cr6.5Sn40) with high potential as new hard magnetic compound is discovered. To produce the compound in large amounts a special procedure is needed. By quantitative microscopy and magnetometry promising intrinsic properties, Js ~ 0.9 T, K1 ~ 1.7 MJ/m3, TC ~ 612 K, are found with K1 increasing with temperature.

  相似文献   


8.
Lead‐free and more air‐stable perovskite Cs2SnI6 absorber with a direct bandgap of 1.48 eV is synthesized via a modified solution process. Different nanostructured ZnO nanorod arrays as electron transport layers and hole blocking layers are grown by controlling the seed layer and used to fabricate mesoscopic perovskite solar cells with Cs2SnI6 as light absorber layer. The influences of ZnO seed layers and nanorod morphology on the device photovoltaic performance were also investigated. With careful control of ZnO nanorod length and pore size to ensure high loading of the Cs2SnI6 absorber, we achieved power conversion efficiency of near 1%.

  相似文献   


9.
Defect‐caused visible photoluminescence after visible excitation in anatase TiO2 microresonators couples to whispering gallery modes (WGMs). Spherical anatase TiO2 of a radius between 1.5 µm and 4 µm have been prepared by a sol–gel technique based on hydrolysis of titanium tetrabutoxide. The observation of WGMs in intrinsic anatase TiO2 without additional dopant offers new perspectives for the localisation of light at TiO2 surfaces for the design of photocatalysts.

WGMs show up as narrow peaks in the photoluminescence spectra of TiO2 microparticles after visible excitation.  相似文献   


10.
11.
A promising flexible X‐ray detector based on inorganic semiconductor PbI2 crystal is reported. The sliced crystals mechanically cleaved from an as‐grown PbI2 crystal act as the absorber directly converting the impinging X‐ray photons to electron hole pairs. Due to the ductile feature of the PbI2 crystal, the detector can be operated under a highly curved state with the strain on the top surface up to 1.03% and still maintaining effective detection performance. The stable photocurrent and fast response were obtained with the detector repeated bending to a strain of 1.03% for 100 cycles. This work presents an approach for developing efficient and cost‐effective PbI2‐based flexible X‐ray detector.

  相似文献   


12.
The excitons in the orthorhombic phase of the perovskite CH3NH3PbI3 are studied using the effective mass approximation. The electron–hole interaction is screened by a distance‐dependent dielectric function, as described by the Haken potential or the Pollmann–Büttner potential. The energy spectrum and the eigenfunctions are calculated for both cases. The results show that the Pollmann–Büttner model, using the corresponding parameters obtained from ab initio calculations, provides better agreement with the experimental results.

  相似文献   


13.
We reported the characteristics of p‐type tin‐oxide (SnO) thin film transistors (TFTs) upon illumination with visible light. Our p‐type TFT device using the SnO film as the active channel layer exhibits high sensitivity toward the blue‐light with a high light/dark read current ratio (Ilight/Idark) of 8.2 × 103 at a very low driven voltage of <3 V. Since sensing of blue‐light radiation is very critical to our eyes, the proposed p‐type SnO TFTs with high sensitivity toward the blue‐light show great potential for future blue‐light detection applications.

  相似文献   


14.
Perovskite formamidinium lead triiodide (FAPbI3) is a very promising photovoltaic material. Unfortunately, perovskite FAPbI3 converts to a hexagonal phase at ambient conditions. Herein we study the electronic structure of both perovskite and hexagonal FAPbI3 films using soft X‐ray absorption near edge structure (XANES) and density functional theory. We find that the C and N 2p states of FA hybridize with the Pb, I states at the conduction band minimum in hexagonal, but not perovskite, FAPbI3. We also demonstrate that C K‐edge XANES can be used to investigate shifts in the valence band in other organic‐inorganic hybrid perovskites.

Graphical summary of the electronic structure and C K‐edge XANES in both perovskite and hexagonal FAPbI3 highlighting our findings.  相似文献   


15.
Metal–insulator–metal capacitors (MIMCAP) with stoichiometric SrTiO3 dielectric were deposited stacking two strontium titanate (STO) layers, followed by intermixing the grain determining Sr‐rich STO seed layer, with the Ti‐rich STO top layer. The resulted stoichiometric SrTiO3 would have a structure with less defects as demonstrated by internal photoemission experiments. Consequently, the leakage current density is lower compared to Sr‐rich STO which allow further equivalent oxide thickness downscaling.

Schematic of MIMCAP with stoichiometric STO dielectric formed from bottom Sr‐rich STO and top Ti‐rich STO after intermixing during crystallization anneal.  相似文献   


16.
Cu2SnSe3 nanoparticles are synthesised using oleylamine as both a solvent and capping agent and spray coated to form dye‐sensitised solar cell (DSSC) counter electrodes (CEs) using earth‐abundant elements. The film requires annealing at only 400 °C in nitrogen, which is a lower temperature than previous reports of both Cu2SnSe3and Cu2ZnSnSe4 films, also avoiding the use of Se gas. The composition and phase of the material is confirmed to be kesterite Cu2SnSe3. DSSCs using Cu2SnSe3 CEs give a power conversion efficiency of 4.87%, compared to 5.35% when using Pt. Electrochemical impedance spectroscopy indicates that the performance of the Cu2SnSe3 CE is enhanced under illumination, leading to a drop in the charge transfer resistance. This illumination‐induced enhancement of the catalytic activity provides a novel mechanism for the enhancement of CE performance in DSSCs.

  相似文献   


17.
An innovative hybrid QD sensitized photovoltaic carbon nanotubes microyarn has been developed using thermally‐stable and highly conductive carbon nanotubes yarns (CNYs). These CNYs are highly inter‐aligned, ultrastrong and flexible with excellent electrical conductivity, mechanical integrity and catalytic properties. The CNYs are coated with a QD‐incorporated TiO2 microfilm and intertwined with a second set of CNYs as a counter electrode (CE). The maximum photon to current conversion efficiency (ηAM1.5) achieved with prolonged‐time stability was 5.93%. These cells are capable of efficiently harvesting incident photons regardless of direction and generating photocurrents with high efficiency and operational stability.

  相似文献   


18.
Pentacene thin‐film transistor with high‐κ TaLaO as gate dielectric has been fabricated and shows a carrier mobility of 0.73 cm2/V s, much higher than that based on pure La2O3 (0.43 cm2/V s) due to the smoother surface of the TaLaO film and thus larger pentacene islands grown on it in the initial stage. Moreover, among various times for fluorine‐plasma treatment on the TaLaO gate dielectric, 100 seconds result in the highest carrier mobility of 1.12 cm2/V s due to (1) smoothest oxide surface achieved by fluorine passivation of oxide traps, as measured by AFM and supported by smallest sub‐threshold swing and lowest low‐frequency noise; (2) the largest pentacene grains grown on the smoothest oxide surface, as demonstrated by AFM.

  相似文献   


19.
We report the synthesis of single‐phase Bi3O2S3 sample and confirm the occurrence of bulk superconductivity with transition temperature at 5.8 K. The Bi3O2S3 superconductor is categorized as typical type‐II superconductor based on the results of both temperature and magnetic field dependences of magnetization. Hall coefficient measurements give evidence of a multiband character, with a dominant conduction mainly by electron‐like charge carriers. The charge carrier density is about 1.45 × 1019 cm–3, suggesting that the system has very low charge carrier density.

  相似文献   


20.
Understanding and controlling the growth and stability of molecular thin films on solid surfaces is necessary to develop nanomaterials with well‐defined physical properties. As a prominent model system in organic electronics, we investigate the post‐growth dewetting kinetics of the fullerene C60 on mica with real‐time and in situ X‐ray scattering. After layer‐by‐layer growth of C60, we find a thermally‐activated post‐growth dewetting, where the smooth C60‐layer breaks up into islands. This clearly shows that growth is kinetically limited before the system moves over an activation barrier into an energetically favored configuration. From the temperature‐dependent dewetting kinetics we find an effective activation barrier of 0.33 eV, which describes both the temperature‐dependent macroscopic changes in the surface morphology and the microscopic processes of inter‐ and intralayer diffusion during dewetting.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号