首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
This letter reports on the performance improvement of an epitaxially grown SiGe on Si solar cell by optimizing the back surface field (BSF). First, a Si0.18Ge0.82 on silicon (Si) solar cell was fabricated with a 0.25 μm BSF layer. A 25 mV open‐circuit voltage (VOC) improvement was observed on this BSF solar cell compared with the reference solar cell without BSF layer. Then, a Si0.18Ge0.82 on Si solar cell with double BSF layers was designed and fabricated. The measured efficiency of this solar cell is 3.4% when filtered by a GaAs0.79P0.21 top cell. To the best of the authors' knowledge, the 3.4% efficiency reported here is the highest efficiency for SiGe on Si solar cells when filtered by a GaAs0.79P0.21 top cell. The previous best reported efficiency for high Ge composition SiGe on Si solar cell was only 1.7% when filtered by a GaAs0.79P0.21 top cell.  相似文献   

2.
Three-dimensional (3D) nanostructures in thin film solar cells have attracted significant attention due to their appli- cations in enhancing light trapping. Enhanced light trapping can result in more effective absorption in solar cells, thus leading to higher short-circuit current density and conversion efficiency. We develop randomly distributed and modified ZnO nanorods, which are designed and fabricated by the following processes: the deposition of a ZnO seed layer on sub- strate with sputtering, the wet chemical etching of the seed layer to form isolated islands for nanorod growth, the chemical bath deposition of the ZnO nanorods, and the sputtering deposition of a thin Al-doped ZnO (ZnO:Al) layer to improve the ZnO/Si interface. Solar cells employing the modified ZnO nanorod substrate show a considerable increase in solar energy conversion efficiency.  相似文献   

3.
We present a‐Si:H/µc‐Si:H tandem solar cells on laser textured ZnO:Al front contact layers. Direct pulsed laser interference patterning (DLIP) was used for writing arrays of one‐dimensional micro gratings of submicron period into ZnO:Al films. The laser texture provides good light trapping which is indicated by an increase in short‐circuit current density of 20% of the bottom cell limited device compared to cells on planar ZnO:Al. The open‐circuit voltage of the cells on laser textured ZnO:Al is almost the same as for cells on planar substrates, indicating excellent growth conditions for amorphous and microcrystalline silicon on the U‐shaped grating grooves. DLIP is a simple, single step and industrially applicable method for large area periodic texturing of ZnO:Al thin films. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

4.
于晓明  赵静  侯国付  张建军  张晓丹  赵颖 《物理学报》2013,62(12):120101-120101
对于硅薄膜太阳电池来说, 无论是PIN型还是NIP型太阳电池, 采用绒面陷光结构来提高入射光的有效利用率是提高太阳电池效率的重要方法之一.本文采用标度相干理论对PIN和NIP型电池的绒面结构的陷光性能进行了数值模拟. 结果表明: PIN电池中前电极和NIP电池中背电极衬底粗糙度分别为160和40 nm时可获得理想的陷光效果; 在不同粗糙度背电极衬底上制备a-SiGe:H电池发现, 使用40和61.5 nm 背电极可获得相当的短路电流密度, 理论分析和实验得到了一致的结果. 关键词: 陷光结构 光散射能力 标量相干理论 硅基薄膜太阳电池  相似文献   

5.
Dry plasma etching, commonly used by the Photonics community as the etching technique for the fabrication of photonic nanostructures, could be a source of device performance limitations when used in the frame of silicon photovoltaics. So far, the lack of silicon solar cells with state‐of‐the‐art efficiencies utilizing nanophotonic concepts shows how challenging their integration is, owing to the trade‐off between optical and electrical properties. In this study we show that dry plasma etching results in the degradation of the silicon material quality due to (i) a high density of dangling bonds and (ii) the presence of sub‐surface defects, resulting in high surface recombination velocities and low minority carrier lifetimes. On the contrary, wet chemical anisotropic etching used as an alternative, leads to the formation of inverted nanopyramids that result in low surface recombination velocity and low density of dangling bonds. The proposed inverted nanopyramids could enable high efficiency photonic assisted solar cells by offering the potential to achieve higher short‐circuit current without degrading the open circuit voltage. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

6.
采用甚高频等离子体增强化学气相沉积技术,在前期单室沉积的微晶硅薄膜太阳电池和非晶硅/微晶硅叠层太阳电池研究的基础上,通过对微晶硅底电池本征层硅烷浓度的优化,获得了初始效率达到11.02%(电池面积1.0 cm2)的非晶硅/微晶硅叠层太阳电池.同时,100 cm2的非晶硅/微晶硅叠层太阳电池的组件效率也达到了9.04%. 关键词: 非晶硅/微晶硅叠层电池 单室 甚高频  相似文献   

7.
梁钊铭  吴永刚  夏子奂  周建  秦雪飞 《物理学报》2014,63(19):198801-198801
本文用时域有限差分法对硅层等效厚度为100 nm的具有不同前后光栅周期的介质/金属双光栅结构薄膜太阳能电池进行了模拟分析,比较了三角形最佳相同与不同周期光栅结构的吸收光谱特性,分析了光栅高度、填充比、硅吸收层厚度对最佳相同和不同周期光栅结构光吸收特性的影响,以及相应结构中导致光吸收增强的共振模式.结果表明前后光栅周期为1:1的共形双光栅结构中存在光泄漏现象,偏离1:1后的光栅结构可有效地抑制低级次衍射光的泄漏,前光栅周期小于后光栅周期的结构光吸收性能的提高来自于平面波导模式在吸收层中的有效激发和传播,而前光栅周期大于后光栅周期的结构光吸收性能的提高则来自于后光栅界面上所激发的等离子体极化模式.在较厚的硅吸收层厚度,前后光栅周期比为1:2和1:3的电池结构也会出现光泄漏现象,从而使具有最大光吸收效率的结构偏离这些周期比结构的位置.  相似文献   

8.
Ultra‐thin thermally grown SiO2 and atomic‐layer‐deposited (ALD) Al2O3 films are trialled as passivating dielectrics for metal–insulator–semiconductor (MIS) type contacts on top of phosphorus diffused regions applicable to high efficiency silicon solar cells. An investigation of the optimum insulator thickness in terms of contact recombination factor J0_cont and contact resistivity ρc is undertaken on 85 Ω/□ and 103 Ω/□ diffusions. An optimum ALD Al2O3 thickness of ~22 Å produces a J0_cont of ~300 fAcm–2 whilst maintaining a ρc lower than 1 mΩ cm2 for the 103 Ω/□ diffusion. This has the potential to improve the open‐circuit voltage by a maximum 15 mV. The thermally grown SiO2 fails to achieve equivalently low J0_cont values but exhibits greater thermal stability, resulting in slight improvements in ρc when annealed for 10 minutes at 300 °C without significant changes in J0_cont. The after‐anneal J0_cont reaches ~600 fAcm–2 with a ρc of ~2.5 mΩ cm2 for the 85 Ω/□ diffusion amounting to a maximum gain in open‐circuit voltage of 6 mV. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
Carbon layers have been employed as intermediate layers between Mo back contact and Cu2ZnSn(S1–xSex)4(CZTSSe) absorber film prepared by sol–gel and post‐selenization method. Carbon layers with appropriate thickness can significantly inhibit the formation of MoSe2 and voids at bottom region of the absorber, and therefore reduce the series resistance remarkably. The conversion efficiency can be boosted by the introducing of the carbon layer from 6.20% to 7.24% by enhancement in short current density, fill factor and open voltage in comparison to the reference sample without carbon layer. However, excess thickness of carbon layer will worse device performance due to the deteriorated absorber crystallinity. In addition, the time‐resolved photoluminescence analysis shows that inserting the carbon layer with suitable thickness does not introduce recombination and lower minority lifetime. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

10.
The flow simulation for GaxIn1−xSb and Si melts was conducted for quasi-steady conditions. The maximum velocity was under the solid–liquid interface near periphery of the crystals. An introduction of ultrasound into the liquid formed a standing wave channel under the solid–liquid interface, which acted on melt particles. The calculations of convective and ultrasonic forces acting on the particles in the melt showed that the ultrasonic force is much higher than the convective force.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号