首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Perovskite formamidinium lead triiodide (FAPbI3) is a very promising photovoltaic material. Unfortunately, perovskite FAPbI3 converts to a hexagonal phase at ambient conditions. Herein we study the electronic structure of both perovskite and hexagonal FAPbI3 films using soft X‐ray absorption near edge structure (XANES) and density functional theory. We find that the C and N 2p states of FA hybridize with the Pb, I states at the conduction band minimum in hexagonal, but not perovskite, FAPbI3. We also demonstrate that C K‐edge XANES can be used to investigate shifts in the valence band in other organic‐inorganic hybrid perovskites.

Graphical summary of the electronic structure and C K‐edge XANES in both perovskite and hexagonal FAPbI3 highlighting our findings.  相似文献   


2.
The CuNi binary alloy can be significant as a catalyst for nitrogen‐doped (N‐doped) graphene growth considering controllable solubility of both carbon and nitrogen atoms. Here, we report for the first time the possibility of synthesizing substitutional N‐doped bilayer graphene on the binary alloy catalyst. Raman spectroscopy, atomic force microscopy and transmission electron microscopy analysis confirm the growth of bilayer and few‐layer graphene domains. X‐ray photoelectron spectroscopy analysis shows the presence of around 5.8 at% of nitrogen. Our finding shows that large N‐doped bilayer graphene domains can be synthesized on the CuNi binary alloy.

  相似文献   


3.
We found that non‐magnetic defects in two‐dimensional topological insulators induce bound states of two kinds for each spin orientation: electron‐ and hole‐like states. Depending on the sign of the defect potential these states can be also of two kinds with different distribution of the electron density. The density has a maximum or minimum in the center. A surprising effect caused by the topological order is a singular dependence of the bound‐state energy on the defect potential.

  相似文献   


4.
We theoretically study the strain effect on the Casimir interactions in graphene based systems. We found that the interactions between two strained graphene sheets are strongly dependent on the direction of stretching. The influence of the strain on the dispersion interactions is still strong in the presence of dielectric substrates but is relatively weak when the substrate is metallic. Our studies would suggest new ways to design next generation devices.

  相似文献   


5.
The α‐PbO2‐type TiO2 is synthesized under high‐pressure and high‐temperature environment and it shows higher photocatalytic activity as compared to rutile and anatase under UV irradiation. The reduction in α‐PbO2‐type TiO2 induces visible‐light photocatalytic activity. These results indicate that α‐PbO2‐type TiO2 is an important candidate material for use in a photocatalytic matrix.

  相似文献   


6.
Transparent and flexible carbon doped ZnO (C:ZnO) field emission device was successfully fabricated on an arylite substrate. Excellent adhesion of deposited C:ZnO on the flexible substrate was achieved with low sputtering power and Ar flow rate. In the fabricated device, nanostructured C:ZnO and as‐deposited thin films were used as field emitter and phosphor screen, respectively. The C:ZnO thin film showed a transparency of about 80% at 550 nm wavelength and average sheet resistance of 1.96 kΩ/□. The C:ZnO phosphor screen emitted red light during the field emission measurement, correlating the dominant cathodoluminescence peak at 646 nm. Thus, a promising transparent and flexible field emission display can be realized with C:ZnO based material.

Transparent and flexible C:ZnO film phosphor screen (anode) and nanocone emitters (cathode) for field emission device.  相似文献   


7.
Despite the great promise of printed flexible electronics from 2D crystals, and especially graphene, few scalable applications have been reported so far that can be termed roll‐to‐roll compatible. Here we combine screen printed graphene with photonic annealing to realize radio‐frequency identification devices with a reading range of up to 4 meters. Most notably our approach leads to fatigue resistant devices showing less than 1% deterioration of electrical properties after 1000 bending cycles. The bending fatigue resistance demonstrated on a variety of technologically relevant plastic and paper substrates renders the material highly suitable for various printable wearable devices, where repeatable dynamic bending stress is expected during usage. All applied printing and post‐processing methods are compatible with roll‐to‐roll manufacturing and temperature sensitive flexible substrates providing a platform for the scalable manufacturing of mechanically stable and environmentally friendly graphene printed electronics.

  相似文献   


8.
We reported the characteristics of p‐type tin‐oxide (SnO) thin film transistors (TFTs) upon illumination with visible light. Our p‐type TFT device using the SnO film as the active channel layer exhibits high sensitivity toward the blue‐light with a high light/dark read current ratio (Ilight/Idark) of 8.2 × 103 at a very low driven voltage of <3 V. Since sensing of blue‐light radiation is very critical to our eyes, the proposed p‐type SnO TFTs with high sensitivity toward the blue‐light show great potential for future blue‐light detection applications.

  相似文献   


9.
We demonstrate high optical transmission in solar cell contacts based on nanowire arrays with subwavelength spacing. The photocurrent results obtained from fabricated devices are compared with numerical simulations. The proposed contact design leads to optical losses significantly smaller than the fraction of the top surface taken up by the metallic contact (<10% vs. 36%). The resulting sheet resistance of the contact is 46.7 Ω/square, comparing favourably with transparent conductive oxides.

  相似文献   


10.
The reduction of void formation in local Al contact structures is of high interest in studies dealing with passivated emitter and rear contact (PERC) solar cells. So far, several processing parameters and their impact on local contact formation were investigated in detail. However, up to now density variation of Al in dependence on temperature and Si content in the melt were not taken into account as a principal reason for void formation. In this context the current assumption of a constant volume of the Al paste particles is discussed in more detail. Based on the results of energy dispersive X‐ray spectroscopy, void formation implies either an expansion of paste particles or their burst during contact formation.

  相似文献   


11.
The operation characteristics of nominal bilayer (BL) organic solar cells (OSCs), the active layers (ALs) of which consisted of sequentially casted bottom P3HT donor and top ICBA acceptor layers, resembled those of OSCs with bulk heterojunction (BHJ) ALs. Optical analysis and device simulations showed that such resemblance can be attributed to a similarity in the micromorphology of ALs; as‐deposited BL‐type ALs transformed spontaneously into BHJ‐type ALs. The inclusion of P3HT nanowires (NWs) in the donor layers resulted in different AL micromorphology and consequently a larger power conversion efficiency. Separate assessment of the exciton generation and charge–carrier transport and/or extraction showed that the contribution of P3HT NWs was more prominent in optical effects.

  相似文献   


12.
Si thin films on glass grown by liquid phase crystallization (LPC) exhibit large grains resembling those in multicrystalline Si wafers. The present work gives direct insight into how planar defects in LPC‐Si thin films influence the device performance of the corresponding solar cells by acquiring electron‐backscatter diffraction maps and measuring solar cell parameters on the same identical positions. By this approach, it was possible to demonstrate how low scanning velocities of the laser line during the crystallization lead to lower densities of grain boundaries, to improved charge‐carrier diffusion lengths, and hence to improved device performances.

  相似文献   


13.
Perovskite‐like metal‐organic frameworks (MOFs) are hybrid materials of high interest for their potential in information storage technology, as Pb‐free substitutes for the widely used lead zirconate titanate (PZT) family of multiferroics. We report here a new, microwave‐assisted method of synthesis for perovskite‐like MOFs, which exploits the advantages of rapid and volumetric heating by microwaves in order to achieve synthesis within minutes, compared to days required by previously reported methods. The preliminary results demonstrate a broad control over the size and morphology of the products, by minor changes in the reaction conditions. An investigation of the effects of size and morphology on the magnetic and dielectric properties is presented here.

  相似文献   


14.
An innovative hybrid QD sensitized photovoltaic carbon nanotubes microyarn has been developed using thermally‐stable and highly conductive carbon nanotubes yarns (CNYs). These CNYs are highly inter‐aligned, ultrastrong and flexible with excellent electrical conductivity, mechanical integrity and catalytic properties. The CNYs are coated with a QD‐incorporated TiO2 microfilm and intertwined with a second set of CNYs as a counter electrode (CE). The maximum photon to current conversion efficiency (ηAM1.5) achieved with prolonged‐time stability was 5.93%. These cells are capable of efficiently harvesting incident photons regardless of direction and generating photocurrents with high efficiency and operational stability.

  相似文献   


15.
Today's micro‐ and nano‐fabrication is essentially two‐dimensional, with very limited possibilities of accessing the third dimension. The most viable way to mass‐fabricate functional structures at the nano‐scale, such as electronics or MEMS, with equal feature sizes in all directions, is by three‐dimensional self‐assembly. Up to now, three‐dimensional self‐assembly has mainly been restricted to crystals of polymer spheres. We report on two‐ and three‐dimensional self‐assembly of silicon cubes, levitated in a paramagnetic fluid. We demonstrate the benefits of templating and study the effect of a change in hydrophilicity of the cubes. These experiments bring us one step closer to three‐dimensional self‐assembly of anisotropic, semiconducting units, which is a crucial milestone in overcoming the scaling limits imposed by contemporary 2D microfabrication.

  相似文献   


16.
17.
Surface‐diffusion‐induced spontaneous Ga incorporation process is demonstrated in ZnO nanowires grown on GaN substrate. Crucially, contrasting distributions of Ga atoms in axial and radial directions are experimentally observed. Ga atoms uniformly distribute along the ~10 μm long ZnO nanowire and show a rapidly gradient distribution in the radial direction, which is attributed substantially to the difference between surface and volume diffusion. The understanding on the incorporation process can potentially modulate doping and properties in semiconductor nanomaterials.

  相似文献   


18.
19.
We present a detailed temperature‐dependent (4–300 K) spectroscopic study of DyMnO3 single crystals with distorted perovskite structure. Energies of 36 crystal‐field levels of Dy3+ in paramagnetic DyMnO3 were determined. The Dy3+ ground Kramers doublet does not split at and splits below Tlock = 18 K. The splitting grows fast at temperatures near and reaches Δ0 ≈ 11 ± 2 cm–1 at 4 K. Using the experimental temperature dependence Δ0(T), we calculate the dysprosium magnetic moment mDy(T) and the dysprosium contribution into specific heat and magnetic susceptibility. Analysing all the experimental data, we conclude that the Dy–Mn interaction is of the Dzyaloshinskii–Moriya type.

Intensity map in the temperature–wave number coordinates for a spectral line corresponding to the f–f transition of Dy3+ in DyMnO3 and a scheme of the splitting of the Dy ground Kramers doublet. Arrows represent Dy magnetic moments.  相似文献   


20.
Using the recently suggested method of processing the data on external quantum efficiency as a function of output optical power, we have estimated the dependence of light extraction efficiency of high‐power light‐emitting diodes (LEDs) on their emission wavelength varied between 425 nm and 540 nm. The extraction efficiency is found to increase with the wavelength from ~80% to ~85% in this spectral range and to correlate with the wavelength dependence of reflectivity of the large‐area p‐electrode being the essential unit of the LED chip design. The correlation found identifies the incomplete reflection of emitted light from the electrode as the major mechanism eventually controlling the spectral dependence of the efficiency of light extraction from the LEDs.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号