首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two In–Sb–Te compounds with low Te content (12 at.% and 17 at.%), deposited by metalorganic chemical vapour deposition, were implemented into prototype phase‐change memory devices of size 50 × 50 nm2 and 93 × 93 nm2. These chalcogenides yielded devices with higher threshold voltage than those based on Ge–Sb–Te alloys. The endurance and programming window were markedly improved (from 103 to 106 cycles and from 1 to 2 orders of magnitude, respectively) when employing the Te‐richer alloy. Moreover, in situ structural and electrical analysis on TiN/In–Sb–Te/dielectric stacks provided additional insight on the thermal stability of the two ternary phases In3SbTe2 and InSb0.8Te0.2, which were found to coexist in these compounds. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
The temperature dependence of the Raman spectra of Bi2Te3 and Bi0.5Sb1.5Te3 thermoelectric films was investigated. The temperature coefficients of the Eg(2) peak positions were determined as –0.0137 cm–1/°C and –0.0156 cm–1/°C, respectively. The thermal expansion of the crystal caused a linear shift of the Raman peak induced by the temperature change. Based on the linear relation, a reliable and noninvasive micro‐Raman scattering method was shown to measure the thermal conductivity of the thermoelectric films. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Cu–Nb–O films with a thickness of ca. 150 nm were prepared on borosilicate glass substrates using CuNbO3 ceramic target at substrate temperature of 500 °C by pulsed laser deposition. The X‐ray diffraction patterns showed that the Cu–Nb–O films were amorphous or an aggregation of fine crystals. The post‐annealed film at 300 °C in N2 gas showed 80% transmission in visible light (band gap = 2.6 eV) and high p‐type conductivity of 21 S cm–1. The Cu–Nb–O film with a thickness of 100 nm, fabricated from the target with a composition of Cu/Nb = 0.9, showed the highest p‐type conductivity of 116 S cm–1. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Phase‐change memory (PCM) is regarded as one of the most promising candidates for the next‐generation nonvolatile memory. Its storage medium, phase‐change material, has attracted continuous exploration. Along the traditional GeTe–Sb2Te3 tie line, the binary compound Sb2Te3 is a high‐speed phase‐change material matrix. However, the low crystallization temperature prevents its practical application in PCM. Here, Cr is doped into Sb2Te3, called Cr–Sb2Te3 (CST), to improve the thermal stability. We find that, with increase of the Cr concentration, grains are obviously refined. However, all the CST films exhibit a single hexagonal phase as Sb2Te3 without phase separation. Also, the Cr helps to inhibit oxidation of Sb atoms. For the selected film CST_10.5, the resistance ratio between amorphous and crystalline states is more than two orders of magnitude; the temperature for 10‐year data retention is 120.8 °C, which indicates better thermal stability than GST and pure Sb2Te3. PCM cells based on CST_10.5 present small threshold current/voltage (4 μA/0.67 V). In addition, the cell can be operated by a low SET/RESET voltage pulse (1.1 V/2.4 V) with 50 ns width. Thus, Cr–Sb2Te3 with suitable composition is a promising novel phase‐change material used for PCM with high speed and good thermal stability performances. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

5.
The study of the ternary phase diagram Yb–Sb–Te has led to the synthesis of YbSb2Te4 as a pure phase by way of high energy ball milling followed by annealing, whereas typical high temperature powder metallurgy leads to multiphase sample with impurities of the very stable YbTe. The Hall mobility, Seebeck coefficient, electrical resistivity and thermal conductivity of the layered compound YbSb2Te4 were measured in the range of 20–550 °C. The thermoelectric figure of merit peaks at 525 K and reaches 0.5. Of particular interest is the very low lattice thermal conductivity (as low as a glass) which makes YbSb2Te4 and related compounds promising thermoelectric materials. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Electrical and optical studies have been carried out on aluminium-modified Ge2Sb2Te5 thin films to check its applicability as an active material in optical and electrical memory storage devices. Five polycrystalline bulk samples were prepared with compositions: Alx(Ge2Sb2Te5)1?x; x = 0, 0.08, 0.14, 0.21, 0.25. Amorphous thin films were deposited from the polycrystalline bulk by thermal evaporation. Temperature-dependent resistance shows the increase in crystallization temperature of Ge–Sb–Te films on aluminium addition. Activation energy for conduction, conductivity, optical band gap, coefficient of refraction and extinction coefficient are studied with respect to Al content in both amorphous and crystalline phases of Ge–Sb–Te alloy films.  相似文献   

7.
Antiferroelectric PbZrO3 thin films have been deposited on Pt(111)/Ti/SiO2/Si substrate by polymer modified sol–gel route. Temperature dependent PE hysteresis loops have been measured at 51 MV/m within a temperature range of 40 °C to 330 °C. The maximum electrocaloric effect ~0.224 × 10–6 K mV–1 has been observed near the dielectric phase transition temperature (235 °C) of the thin films. The electrocaloric effect and its strong temperature dependence have been attributed to nearly first‐order phase transition. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
The temperature dependence of the dc conductivity and thermoelectric power was determined for five different amorphous chalcogenide Se–Ge–Te films, with Ge?=?3.0–22?at.%, Se?=?0–97?at.% and Te?=?0–97?at.%. The films were prepared by thermal evaporation of GeSe4, GeTe4 and GeSe2Te2 quenched bulk materials. Values of the activation energy calculated from the temperature dependence of both electrical conductivity and thermoelectric power showed a decrease with increasing Ge content in the Se–Ge films as well as with replacement of Te for Se in the Se–Ge–Te films. The results showed an Anderson transition, with the conductivity showing insulating behaviour on the Ge–Se side to metallic behaviour at the binary composition Ge–Te. The radius of localization was obtained for the different compositions investigated. The wave function associated with the charge carriers at the composition Ge3.3Te96.7 is non-localized. A minimum metallic conductivity of 237?±?5?(Ω?cm)?1 was found.  相似文献   

9.
We study by X‐ray absorption spectroscopy the local structure around Zn and Ga in solution‐processed In–Ga–Zn–O thin films as a function of thermal annealing. Zn and Ga environments are amorphous up to 450 °C. At 200 °C and 450 °C, the Ga atoms are in a β‐Ga2O3 like structure, mostly tetrahedral gallium oxide phase. Above 300 °C, the Zn atoms are in a tetrahedral ZnO phase for atoms inside the nanoclusters. The observed formation of the inorganic structure above 300 °C may be correlated to the rise of the mobility for IGZO TFTs. The Zn atoms localized at the nanocluster boundary are undercoordinated with O. Such ZnO cluster boundary could be responsible for electronic defect levels. Such defect levels were put in evidence in the upper half of the band gap. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

10.
The changes occuring in the stoichiometry of evaporated tellurium oxide films from room temperature to 375°C were investigated using infrared (IR) absorption spectroscopy, X-ray diffraction and scanning electron microscopy (SEM). Films deposited on room temperature substrate were found to decompose and amorphous having Te2O5 stoichiometry. Annealing at 250°C in air for 30 minutes gave polycrystalline nature with TeO3 stoichiometry. The IR and X-ray diffraction results further indicated that the original TeO2 stoichiometry could be restored at 375°C annealing temperature with a preferred growth along 110 plane. These films were found to be chemically stable as further annealing in air at 375°C gave no change on their infrared spectrum and X-ray diffraction pattern.  相似文献   

11.
In this study, polycrystalline powder Pr0.6Ca0.4Fe0.8Co0.2O3 (PCFC) was synthesized by a sol–gel process. This oxide was analyzed by X-ray powder diffraction. Synthesized Pr0.6Ca0.4Fe0.8Co0.2O3 showed up to be single phase and belongs to the orthorhombic crystalline system with a Pbnm space group. The microstructural features of the synthesized products display particles having an irregular morphology and a size in the range of 50–100 nm. X-ray diffraction (XRD) analysis shows the chemical compatibility between the PCFC cathode and the electrolyte Sm-doped ceria since no reaction products were honored when the material was mixed and co-fired at 1,000 °C for 168 h. The thermal expansion coefficient of PCFC 16.9?×?10?6 °C?1 is slightly higher than that of Ce0.8Sm0.2O1.9 (SDC) over the studied temperature range. The greater contribution to the total resistance of the electrode is the electrochemical resistance associated with oxygen exchange in the cathode surface (0.96 Ωcm2). The dc four-probe measurement indicated that PCFC exhibits fairly high electrical conductivity, over 100 S cm?1 at T?≥?500 °C, making this material promising as a cathode material for intermediate temperature solid oxide fuel cells.  相似文献   

12.
We have obtained the metastable phase of the thermoelectric alloy Bi0.4Sb1.6Te3 with electron type conductivity for the first time using the method of quenching under pressure after treatment at P=4.0 GPa and T=400–850 °C. We have consequently performed comparative studies with the similar phase of Sb2Te3. The polycrystalline X-ray diffraction patterns of these phases are similar to the known monoclinic structure α-As2Te3 (C2/m) with less monoclinic distortion, β ≈ 92°. We have measured the electrical resistivity and the Hall coefficient in the temperature range of T=77?450 K and we have evaluated the Hall mobility and density of charge carriers. The negative Hall coefficient indicates the dominant electron type of carriers at temperatures up to 380 K in the metastable phase of Sb2Te3 and up to 440 K in the metastable state of Bi0.4Sb1.6Te3. Above these temperatures, the p-type conductivity proper to the initial phases dominates.  相似文献   

13.
Crystalline and amorphous Ge and amorphous Ge0.8Te0.2 were implanted with 125mTe. The Mössbauer spectra showed quadrupole split doublets. The isomer shift and quadrupole split values suggested that the atomic configuration around Te after implantation in Ge is similar to that of amorphous GeTe.  相似文献   

14.
Cu2Ga4Te7 has recently been reported to have a relatively high thermoelectric (TE) figure of merit (ZT). However, the TE properties of Cu2In4Te7, which has the same defect zinc‐blende structure as Cu2Ga4Te7, have been hardly investigated. Here, we demonstrate that Cu2In4Te7 has relatively high ZT values that are similar to those of Cu2Ga4Te7. High‐density polycrystalline bulk samples of Cu2In4Te7 were prepared and their electrical resistivity (?), Seebeck coefficient (S), and thermal conductivity (κ) were measured. Cu2In4Te7 has a maximum ZT of 0.3 at 700 K, with ?, S, and κ values of 62.1 × 10–5 Ω m, 394 μV K–1, and 0.61 W m–1 K–1, respectively. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Abstract

Rutherford backscattering (RBS) and ion induced X-ray (PIXE) channeling experiments have been used to study the damage accompanying Hg and Al implantations into Hg0.8Cd0.2 Te and its annealing as well as to determine the location of Hg in the crystal.

The damage induced by the implantation of 300 keV Hg and 250 keV Al ions at room temperature was found from RBS channeling studies to reach a saturation level at doses of 1 × 1014 cm?2 and 3 × 1014 cm?2 respectively. The damage resembles that characteristic for extended defects and it anneals at ≈ 300°C.

The location of the constituents of Hg implanted Hg0.8 Cd0.2 Te was studied by PIXE channeling observing the characteristic X-rays for each element. Angular scans indicate that the channels are mostly blocked by Hg atoms for both unannealed and, to a lesser extent, annealed crystals. This observation supports the suggestion that interstitial Hg atoms may be responsible for the conductivity of Hg implanted Hg1–x Cdg Te.  相似文献   

16.
Stable Li‐, Sb‐ and Ta‐modified (K, Na)NbO3 (LTS‐KNN) sol and gel were successfully prepared via an economical water‐based sol–gel method. Simultaneous thermogravimetry and differential scanning calorimetry (TG‐DSC) and X‐ray diffraction showed that organic compounds were eliminated and a pure perovskite phase formed around 600 °C. Transmission electron microscopy showed that the LTS‐KNN particle size was in the range of 11–34 nm after decomposition at 600 °C. Moreover, high performance LTS‐KNN ceramic was successfully prepared at a low sintering temperature of 1000 °C by use of the nanopowder, and its room‐temperature d33, Kp, K and loss are 311 pC/N, 46.8%, 1545 and 0.024, respectively. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
High‐density polycrystalline samples (above 98% of the theoretical density) of Ag8GeTe6 were prepared by solid‐state reactions of Ag2Te, GeTe, and Te, followed by hot‐pressing. The thermoelectric properties were measured at temperatures ranging from room temperature to around 700 K. The thermal conductivity values were extremely low (0.25 Wm–1 K–1 at room temperature), and consequently Ag8GeTe6 exhibited a relatively high thermoelectric figure of merit, ZT = 0.48 at 703 K. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Thin films of Sb2Te3 and (Sb2Te3)70(Bi2Te3)30 alloy and have been deposited on precleaned glass substrate by thermal evaporation technique in a vacuum of 2?×?10?6 Torr. The structural study was carried out by X-ray diffractometer, which shows that the films are polycrystalline in nature. The grain size, microstrain and dislocation density were determined. The Seebeck coefficient was determined as the ratio of the potential difference across the films to the temperature difference. The power factor for the (Sb2Te3)70 (Bi2Te3)30 and (Sb2Te3) is found to be 19.602 and 1.066 of the film of thickness 1,500 Å, respectively. The Van der-Pauw technique was used to measure the Hall coefficient at room temperature. The carrier concentration was calculated and the results were discussed.  相似文献   

19.
Ultra‐thin thermally grown SiO2 and atomic‐layer‐deposited (ALD) Al2O3 films are trialled as passivating dielectrics for metal–insulator–semiconductor (MIS) type contacts on top of phosphorus diffused regions applicable to high efficiency silicon solar cells. An investigation of the optimum insulator thickness in terms of contact recombination factor J0_cont and contact resistivity ρc is undertaken on 85 Ω/□ and 103 Ω/□ diffusions. An optimum ALD Al2O3 thickness of ~22 Å produces a J0_cont of ~300 fAcm–2 whilst maintaining a ρc lower than 1 mΩ cm2 for the 103 Ω/□ diffusion. This has the potential to improve the open‐circuit voltage by a maximum 15 mV. The thermally grown SiO2 fails to achieve equivalently low J0_cont values but exhibits greater thermal stability, resulting in slight improvements in ρc when annealed for 10 minutes at 300 °C without significant changes in J0_cont. The after‐anneal J0_cont reaches ~600 fAcm–2 with a ρc of ~2.5 mΩ cm2 for the 85 Ω/□ diffusion amounting to a maximum gain in open‐circuit voltage of 6 mV. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
A series of nano-crystalline ceria-based solid solution electrolyte, Ce0.8La0.2?x MgxO2?δ (x?=?0.0, 0.05, 0.10, 0.15, and 0.2), were synthesized via the polyvinyl alcohol (PVA) assisted combustion method, and then characterized to the crystalline structure, powder morphology, sintering micro-structure, and electrical properties. Present study showed that Ce0.8La0.2?x Mg x O2?δ was exceedingly stable as a cubic phase in all temperature range and exhibited fine crystals ranging from 15 to 20 nm. After sintering at 1,400 °C, the as-prepared pellets exhibited a dense micro-structure with 96 % of theoretical density. The electrical conductivity was studied using AC impedance spectroscopy and it was observed that the composition Ce0.8La0.1?Mg0.1O2?δ showed higher electrical conductivity of 0.020 S?cm?1 at 700 °C. The thermal expansion was measured using dilatometer technique in the temperature range 30–1,000 °C. The average thermal expansion coefficient of Ce0.8La0.1?Mg0.1O2?δ was 12.37?×?10?6 K?1, which was higher than that of the commonly used SOFC electrolyte YSZ (~10.8?×?10?6 K?1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号