首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article aims to investigate the Raman modes present in Mn‐doped ZnO thin films that are deposited using the magnetron co‐sputtering method. A broad band ranging from 500 to 590 cm−1 is present in the Raman spectra of heavily Mn‐doped ZnO films. The multi‐peak‐fitting results show that this broad band may be composed of six peaks, and the peak at 528 cm−1 could be a characteristic mode of Mn2O3. The results of this study suggest that the origin of the Raman peaks in Mn‐doped ZnO films may be due to three major types: structural disorder and morphological changes caused by the Mn dopant, Mn‐related oxides and intrinsic host‐lattice defects. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Nanocrystalline Mn‐doped zinc oxides Zn1−xMnxO (x = 0–0.10) were synthesized by the sol–gel technique at low temperature. The calcination temperature of the as‐prepared powder was found at 350 °C using differential thermal analysis. A thermogravimetric analysis showed that there is a mass loss in the as‐prepared powder till 350 °C and an almost constant mass till 800 °C. The X‐ray diffraction patterns of investigated nanopowders calcined at 350 °C correspond to the hexagonal ZnO structure without any foreign impurities. The average grain size of the nanocrystal that was observed around ∼25–40 nm from transmission electron microscopy matched well with the crystallite size calculated from the line shape of X‐ray diffraction. The chemical bonding structure in Zn1−xMnxO nanopowders was examined using X‐ray photoelectron spectroscopy techniques, which indicate substitution of Mn2+ ions into Zn2+ sites in ZnO lattice. Micro Raman spectroscopy confirmed the insertion of Mn ions in the ZnO host matrix, and similar wurtzite structure of Zn1−xMnxO (x < 10%) nanocrystals. Temperature‐dependent Raman spectra of the nanocrystals displayed suppression of luminescence and enhancement in full width at half maximum in pure ZnO nanocrystals with increase in temperature, which suggests an enhancement in particle size at elevated temperature. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Zinc oxide nanowires with two distinct morphologies were synthesized on silicon substrates using a simple thermal evaporation and vapor transport method in an oxidizing environment. The as‐synthesized nanowires were coated with gold to allow excitation of surface plasmons over a broad frequency range. SERS studies with near‐IR excitation at 785 nm showed significant enhancement (average enhancement > 106) with excellent reproducibility to detect monolayer concentrations of 4‐methylbenzenethiol (4‐MBT) and 1,2‐benzendithiol (1,2‐BDT) probe molecules. The Raman enhancement showed a strong dependence on the gold film thickness, and the peak enhancement was observed for a ∼40‐nm‐thick film. The Raman enhancement was stronger for randomly oriented nanowires compared to aligned ones suggesting the importance of contributions from the junctions of nanowires. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Multiphonon resonant Raman scattering in N‐doped ZnO films was studied, and an enhancement of the resonant Raman scattering process as well as longitudinal optical (LO) phonon overtones up to the sixth order were observed at room temperature. The resonant Raman scattering intensity of the 1LO phonon in N‐doped ZnO appears three times as strong as that of undoped ZnO, which mainly arises from the defect‐induced Raman scattering caused by N‐doping. The nature of the 1LO phonon at 578 cm−1 is interpreted as a quasimode with mixed A1 and E1 symmetry because of the defects formed in the ZnO lattice. In addition, the previously neglected impurity‐induced two‐LO‐phonon scattering process was clearly observed in N‐doped ZnO. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
We measured the Raman spectra of ZnO nanoparticles (ZnO‐NPs), as well as transition‐metal‐doped (5% Mn(II), Fe(II) or Co(II)) ZnO nanoparticles, with an average size of 9 nm. A typical Raman peak at 436 cm−1 is observed in the ZnO‐NPs, whereas Zn1−xMnxO, Zn1−xFexO and Zn1−xCoxO presented characteristic peaks at 661, 665 and 675 cm−1, respectively. These peaks can be related to the formation of Mn3O4, Fe3O4 and Co3O4 species in the doped ZnO‐NPs. Moreover, these samples were analyzed at various laser powers. Here, we observed new vibrational modes (512, 571 and 528 cm−1), which are specific to Mn, Fe and Co dopants, respectively, and ZnO‐NPs did not reveal any additional modes. The new peaks were interpreted either as disorder activated phonon modes or as local vibrations of Mn‐, Fe‐ and Co‐related complexes in ZnO. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
To increase the sensitivity in surface‐enhanced Raman scattering (SERS) measurement, a three‐dimensional (3D) SERS substrate was prepared by the decoration of silver nanoparticles (AgNPs) on the side walls of ZnO nanowires. The prepared 3D SERS substrates provide the advantages of highly loaded density of AgNPs, with a large specific surface area to interact with analytes, and the ease for the analytes to access the surfaces of AgNPs. To prepare the substrates, ZnO nanowires were first grown on a glass plate by wet chemical method. By treating SnCl2 on the surfaces of ZnO nanowires, Ag seeds could be formed on the side wall of the ZnO nanowires, which were further grown to a suitable size for SERS measurements via photochemical reduction. To optimize and understand the influences of the parameters used in preparation of the substrates, the reaction conditions were systematically adjusted and examined. Results indicated that AgNPs could be successfully decorated on the side wall of the ZnO nanowires only by the assistances of SnCl2. The size and density of AgNPs were affected by both the concentration of silver nitrate and the irradiation time. With optimized condition, the prepared 3D substrates provided an enhancement factor approaching 7 orders of magnitude compared with conventional Raman intensity. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
We use near‐resonance Raman scattering to investigate zinc oxide (ZnO) nanowires grown by chemical vapor deposition on Si substrates. We discuss the role of quasimode mixing on the wavenumber of the longitudinal optical (LO) bands, and we perform Raman measurements with different excitation powers to investigate possible laser heating effects. We find that in the Raman spectra of as‐deposited nanowires grown along the c‐axis of wurtzite, the LO bands are located slightly below the E1(LO) mode of bulk ZnO. We perform a calculation of the expected LO wavenumber in an ensemble of randomly oriented nanowires. Our analysis shows that light refraction, together with the orientation‐dependent cross‐section of the nanowires for the incoming light, counterbalances quasimode mixing effects in the as‐grown product, giving rise to LO bands that are barely redshifted relative to the E1(LO) mode. In the case of ZnO nanowires that have been mechanically removed (scratched) and subsequently deposited onto separate Si substrates, we observe clear laser‐induced heating. Temperature effects account well for the Raman wavenumber shifts displayed by the LO bands in the Raman spectra of the scratched nanowires. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
ZnO nanostructures have attracted great attention for possible applications in optoelectronic and spintronic devices. The electrical resistivity because of carriers can be improved by the introduction of Li ions, as Li is a possible dopant for achieving p‐type ZnO. We have carried out a comprehensive micro‐Raman scattering study of the phonons in 1% Li‐ and undoped ZnO needle crystals grown and annealed at 1073 K for 1 and 2 h under oxygen environment. Phonon mode of doped and undoped ZnO does not show any measurable shift for the doping concentration of 1%. As line width is related to point defect density, we find for both Li‐ and undoped ZnO crystals the crystallinity is improving towards the tip of the needle crystals. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
In this work, we study the silicon amorphization dependence on the crystal depth induced by 6‐MeV Al2+ ions implanted in the <110> and randomly oriented silicon crystal channels, which was not directly experimentally accessible in the previous similar high‐energy ion–crystal implantation cases. Accordingly, the micro‐Raman spectroscopy scanning measurements along the crystal transversal cross section of the ion implanted region were performed. The ion fluence was 1017 particles/cm2. The scanning steps were 0.2 and 0.3 µm, for the channeling and random ion implantations, respectively. The obtained results are compared with the corresponding Rutherford backscattering spectra of 1.2‐MeV protons in the random and channeling orientations measured during the channeling implantation. Additionally, scanning electron microscope picture was taken on the transversal cross section of the implanted region in the channeling implantation case. We show here that the obtained silicon amorphization maxima are in excellent agreement with the corresponding estimated maxima of the aluminum concentration in silicon. This clearly indicates that the used specific micro‐Raman spectroscopy scanning technique can be successfully applied for the depth profiling of the crystal amorphization induced by high‐energy ion implantation. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
We present X‐ray diffraction and Raman spectroscopy studies of Ni‐doped ZnO (Zn1−xNixO, x = 0.0, 0.03, 0.06, and 0.10) ceramics prepared by solid‐state reaction technique. The presence of the secondary phase along with the wurtzite phase is observed in Ni‐doped ZnO samples. The E2(low) optical phonon mode is seen to be shifted to a lower wavenumber with Ni incorporation in ZnO and is explained on the basis of force‐constant variation of ZnO bond with Ni incorporation. A zone boundary phonon is observed in Ni‐doped samples at ∼130 cm−1 which is normally forbidden in the first‐order Raman scattering of ZnO. Antiferromagnetic ordering between Ni atoms via spin‐orbit mechanism at low temperatures (100 K) is held responsible for the observed zone boundary phonon. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
We show in this paper how zinc oxide (ZnO)/silver (Ag) composite microspheres can be prepared by the reduction of Ag(NH3)2+ with the reducing agent formaldehyde in aqueous solution on the surface of ZnO microspheres. During the preparation, Sn2+ was absorbed on the surface of ZnO microspheres for sensitization and activation, and then Ag(NH3)2+ was reduced to Ag nanoparticles by the reducing agent to obtain ZnO/Ag composite microspheres. SEM and TEM images revealed silver nanoparticles with a diameter ranging from tens to 100 nm. X‐Ray photoelectron spectra (XPS), X‐ray diffraction (XRD) patterns and UV‐vis spectra were used to characterize the structure of the ZnO/Ag composite microspheres. The origin of the surface‐enhanced Raman scattering properties was traced to the surface of the ZnO/Ag composite microspheres. The enhancement factor was estimated in detail, and the enhancement mechanism for the SERS effect was also investigated. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
Decay dynamics of the acoustic phonon mode in ZnO nanoparticles, synthesized using the wet chemical technique, is investigated. It is well established that optic phonon modes in a semiconductor favor an anharmonic decay dynamics; in contrast, acoustic modes evidence a rather complex decay behavior, manifesting their dependence on other parameters such as particle size, impurity species, etc. At lower temperatures (T < 500 K), the anharmonic decay process, caused by the weakening of the bond strength, is responsible for the observed decrease in the acoustic mode wavenumbers. However, particle growth due to the coalescence sintering process is prominent at higher temperatures (>600 K) and governs the softening behavior of the acoustic phonon mode towards the Rayleigh line. On the other hand, the precursor species and reaction byproducts on the surface of ZnO nanoparticles induce an anomalous softening behavior in the decay dynamics at specific temperatures by damping the acoustic phonon mode. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous atmospheric pollutants and food contaminants, which exhibit potent carcinogenicity, mutagenicity, and teratogenicity. Vibrational spectroscopy techniques, especially Raman spectroscopy and surface‐enhanced Raman spectroscopy (SERS), can be potentially used as an alternative technique to liquid and gas chromatography in PAH analysis. However, there is limited information on the intrinsic Raman and SERS fingerprints of PAHs. In this study, we have acquired the Raman and SERS spectra of seven PAH compounds and compared their experimental spectra with theoretical Raman spectra calculated by density function theory (DFT). The vibrational modes corresponding to the Raman peaks have also been assigned using DFT. Characteristic Raman and SERS peaks have been identified for five PAH compounds, and the limits of detection were estimated. Such information could be useful for developing SERS assays for simple and rapid PAH identification. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
Raman and photoluminescence of CdS nanowires of diameter 80 nm and lengths up to several tens of micrometers were studied at pressure up to 60 kbar using a Jobin‐Yvon T64000 micro‐Raman system in conjunction with the diamond‐anvil cell technique. The phase transition pressure of wurtzite to rock salt was observed at 38 kbar, which is higher than that of bulk CdS. In contrast with the transition pressure of different‐sized CdS nanocrystal, this elevated phase transition pressure cannot be explained well by the size effect. Thus the contribution of particle morphology of such a system, which represents the low‐energy surface structure, should be considered. The pressure dependence of photoluminescence is also discussed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
Although several fundamental physico‐chemical aspects of nickel sulfides have been studied in detail, particularly for millerite (nickel(II) monosulfide), the most common nickel sulfide mineral, no satisfactory investigation of optical vibrational modes has been reported previously. In this paper, we provide a definitive assignment of the optical phonons in millerite, investigated by polarized Raman spectroscopy on an oriented single crystal. The impact of the power of the incident laser beam on the spectra has also been investigated, revealing evidence for degradation in the quality of the spectra at sufficiently high laser power. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
In‐situ Raman spectroscopy was performed on chemical vapor deposited graphene microbridge (3 μm × 80 μm) under electrical current density up to 2.58 × 108 A/cm2 in ambient conditions. We found that both the G and the G′ peak of the Raman spectra do not restore back to the initial values at zero current, but to slightly higher values after switching off the current through the microbridge. The up‐shift of the G peak and the G′ peak, after switching off the electrical current, is believed to be due to p‐doping by oxygen adsorption, which is confirmed by scanning photoemission microscopy. Both C–O and C=O bond components in the C1s spectra from the microbridge were found to be significantly increased after high electrical current density was flown. The C=O bond is likely the main source of the p‐doping according to our density functional theory calculation of the electronic structure. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
The techniques of inverse Raman spectroscopy, Raman‐induced polarization spectroscopy (RIPS), and optical heterodyne RIPS (OHD‐RIPS) are compared by probing the Q‐branch of the nitrogen molecule. The signal is measured employing either a photomultiplier tube (low background level–RIPS) or a photodetector (high background level–IRS and OHD‐RIPS). The measurements are performed using atmospheric mixtures of N2 Ar with concentrations varying from 0 to 79% N2. This strategy permits estimation of detection limits using the different techniques. Pump and probe energy levels are varied independently to study signal dependence on laser irradiance. A theoretical treatment is presented on the basis of the Raman susceptibility equations, which permits the calculation of spectra for all three techniques. Calculated Q‐branch spectra are compared with the measured spectra for the interactions of a linearly polarized probe beam with a linearly or circularly polarized pump beam. The polarizer angle in the detection path for OHD‐RIPS has a dramatic effect on the shape of the spectrum. The calculated and experimental OHD‐RIPS spectra are in good agreement over the entire range of investigated polarizer angles. Detection limits using these techniques are analyzed to suggest their applicability for measuring other species of importance in combustion and plasma systems. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
The geometric, energetic, electronic structures and optical properties of ZnO nanowires (NWs) with hexagonal cross sections are investigated by using the first-principles calculation of plane wave ultra-soft pseudo-potential technology based on the density functional theory (DFT). The calculated results reveal that the initial Zn-O double layers merge into single layers after structural relaxations, the band gap and binding energies decrease with the increase of the ZnO nanowire size. Those properties show great dimension and size dependence. It is also found that the dielectric functions of ZnO NWs have different peaks with respect to light polarization, and the peaks of ZnO NWs exhibit a significant blueshift in comparison with those of bulk ZnO. Our results gives some reference to the thorough understanding of optical properties of ZnO, and also enables more precise monitoring and controlling during the growth of ZnO materials to be possible.  相似文献   

19.
We present the first vibrational structure investigation of 3,3,7,7‐tetrakis(difluoramino)octahydro‐1,5‐dinitro‐ 1,5‐diazocine (HNFX)—and, more generally, of a member of the new class of gem‐bis(difluoramino)‐substituted heterocyclic nitramine energetic materials—using combined theoretical and experimental approaches. Optimized molecular structure and vibrational spectra of the Ci… symmetry conformer constituting the HNFX crystal were computed using density functional theory methods. Fourier transform infrared and Raman spectra of HNFX crystalline samples were also collected at ambient temperature and pressure. The average deviation of calculated structural parameters from X‐ray diffraction data is ∼1% at the B3LYP/6‐311 + + G(d,p) level of theory, suggesting the absence of significant molecular distortion induced by the crystal field. Very good agreement was found between simulated and measured spectra, allowing reliable assignment of the fundamental normal modes of vibration of the HNFX crystal. Detailed analysis of the normal modes of the C–(NF2)2 and N–NO2 moieties was performed due to their critical importance in the initial steps of the molecular homolytic fragmentation process. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
The temperature dependence of the Raman active frequencies of the lattice modes of dibromocubane is measured below room temperature. The frequencies are linearly dependent on the temperature decreasing with increased temperature with a marked change in slope occurring at 200?K indicative of a structural phase transition. The pressure dependence of the frequencies measured at room temperature up to 24?KBar shows no evidence of a phase change. Density functional calculations of the structure and Raman frequencies of the internal modes of an isolated molecule of C8H6(Br)2 indicate the molecule is slightly distorted from a cubic carbon structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号