首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The molecular dipole moments, their derivatives, and the fundamental IR intensities of the X2CY (X = H, F, Cl; Y = O, S) molecules are determined from QTAIM atomic charges and dipoles and their fluxes at the MP2/6-311++G(3d,3p) level. Root-mean-square errors of +/-0.03 D and +/-1.4 km mol(-1) are found for the molecular dipole moments and fundamental IR intensities calculated using quantum theory of atoms in molecules (QTAIM) parameters when compared with those obtained directly from the MP2/6-311++G(3d,3p) calculations and +/-0.05 D and 51.2 km mol(-1) when compared with the experimental values. Charge (C), charge flux (CF), and dipole flux (DF) contributions are reported for all the normal vibrations of these molecules. A large negative correlation coefficient of -0.83 is calculated between the charge flux and dipole flux contributions and indicates that electronic charge transfer from one side of the molecule to the other during vibrations is accompanied by a relaxation effect with electron density polarization in the opposite direction. The characteristic substituent effect that has been observed for experimental infrared intensity parameters and core electron ionization energies has been applied to the CCFDF/QTAIM parameters of F2CO, Cl2CO, F2CS, and Cl2CS. The individual atomic charge, atomic charge flux, and atomic dipole flux contributions are seen to obey the characteristic substituent effect equation just as accurately as the total dipole moment derivative. The CH, CF, and CCl stretching normal modes of these molecules are shown to have characteristic sets of charge, charge flux, and dipole flux contributions.  相似文献   

2.
Infrared fundamental intensities calculated by the quantum theory of atoms in molecules/charge-charge flux-dipole flux (QTAIM/CCFDF) method have been partitioned into charge, charge flux, and dipole flux contributions as well as their charge-charge flux, charge-dipole flux, and charge flux-dipole flux interaction contributions. The interaction contributions can be positive or negative and do not depend on molecular orientations in coordinate systems or normal coordinate phase definitions, as do CCFDF dipole moment derivative contributions. If interactions are positive, their corresponding dipole moment derivative contributions have the same polarity reinforcing the total intensity estimates whereas negative contributions indicate opposite polarities and lower CCFDF intensities. Intensity partitioning is carried out for the normal coordinates of acetylene, ethylene, ethane, all the chlorofluoromethanes, the X(2)CY (X = F, Cl; Y = O, S) molecules, the difluoro- and dichloroethylenes and BF(3). QTAIM/CCFDF calculated intensities with optimized quantum levels agree within 11.3 km mol(-1) of the experimental values. The CH stretching and in-plane bending vibrations are characterized by significant charge flux, dipole flux, and charge flux-dipole flux interaction contributions with the negative interaction tending to cancel the individual contributions resulting in vary small intensity values. CF stretching and bending vibrations have large charge, charge-charge flux, and charge-dipole flux contributions for which the two interaction contributions tend to cancel one another. The experimental CF stretching intensities can be estimated to within 31.7 km mol(-1) or 16.3% by a sum of these three contributions. However, the charge contribution alone is not successful at quantitatively estimating these CF intensities. Although the CCl stretching vibrations have significant charge-charge flux and charge-dipole flux contributions, like those of the CF stretches, both of these interaction contributions have opposite signs for these two types of vibrations.  相似文献   

3.
Abstract

The measurements of dielectric constant of a number of binary and ternary mixtures of butyl acetate, butyl alcohol, quinoline, pyridine and o-cresol in carbon tetrachloride and benzene have been made at 35°C. Molecular interaction of these aromatic compounds have been studied in terms of variations in parameters; ‘dipole moment’ (μ), ‘interaction dielectric constant’ (δ?), ‘molecular polarisation’ (P) and ‘excess polarisation’ (PE ). The dipole moment has been calculated using Hysken's method, the interaction dielectric constant utilizing the equation of ideal mole fraction law and excess polarisation using the theory of Erap and Glasstone. The positive values of δ?12 for binary mixtures of quinoline and butyl acetate in carbon tetrachloride and benzene have been attributed to the formation of charge transfer complexes. The negative values of δ?12 and δ?123 with pyridine suggest that charge transfer interaction is weakened by pyridine in its binary and ternary mixtures. The plot between the excess polarisation value and the product of mole fractions yielded a straight line passing through the origin showing the formation of charge transfer complexes.  相似文献   

4.
A quantum theory of atoms in molecules (QTAIM) charge-charge flux-dipole flux (CCFDF) decomposition of the MP2/6-311++G(3d,3p) level molecular dipole moment derivatives is reported for the cis-, trans-, and 1,1-difluoroethylenes and the cis- and trans-dichloroethylenes. Although the dipole moment derivatives and infrared fundamental intensities calculated at the MP2 level are overestimated for high-intensity bands corresponding to CF and CC stretching vibrations, the overall agreement is good with a root-mean-square (rms) error of 19.6 km mol-1 for intensities ranging from 0 to 217.7 km mol-1. The intensities calculated from the QTAIM/CCFDF model parameters are in excellent agreement with those calculated directly by the MP2/6-311++G(3d,3p) approach with only a 1.8 km mol-1 rms error. A high negative correlation (r=-0.91) is found between the charge flux and dipole flux contributions to the dipole moment derivatives. Characteristic values of charge, charge flux, and dipole flux contributions are found for CF, CCl, and CH stretching derivatives. The CH stretching derivatives provide especially interesting results with very high charge flux and dipole flux contributions with opposite signs. The charge, charge flux, and dipole flux contributions are found to be transferable from the cis to the trans isomers providing accurate predictions of the theoretical trans intensities with rms errors of 8.6 km mol-1 for trans-difluoroethylene and 5.9 km mol-1 for trans-dichloroethylene.  相似文献   

5.
The photophysical properties of N-Boc-3-[2-(9-anthryl)benzoxazol-5-yl]-l-alanine methyl ester (BoxAnt) and N-Boc-3-[2-[4-(9′-(10′-butyl)anthryl)phenyl]benzoxazol-5-yl]-l-alanine methyl ester (BoxPhAnt) were studied in a series of solvents. Their absorption spectra are less sensitive to the solvent polarity than the corresponding fluorescence spectra which show a pronounced solvatochromic effect leading to large Stokes shifts. Using an efficient solvatochromic method, based on the empirical solvent polarity parameter , a large change of the dipole moment on excitation for BoxPhAnt has been found. From an analysis of the solvatochromic behaviour of the absorption and fluorescence spectra in terms of bulk solvent polarity functions, f(r, n) and g(n), a larger excited-state dipole moment (about 8 D, ψ = 56) was obtained for BoxPhAnt than for BoxAnt (about 3 D, ψ = 0). Both applied methods gave similar values of the excited-state dipole moments for both compounds studied.  相似文献   

6.
1 INTRODUCTION transfer species with common formula H-Rgδ -Xδ, where X represents a strongly electrone-gative atom Since xenon hexafluoraplatinate, XePtF6 , the [1] or fragment, and Rg is a rare-gas atom. These species first rare gas-containing compound was discovered have linear equi- librium geometries and are mainly by Bartlett in 1962, rare gases are getting more and bound up by strong columbic attraction between (H- more attention and have been found to be possible to Rg) and…  相似文献   

7.
The nonlinear optical molecule N,N-bis(4-bromobutyl)-4-nitrobenzenamine was synthesized. The ground state dipole moment was determined by the Debye-Guggenheim method. A solvent mixture of acetonitrile and toluene was used for the solvatochromic determination of the excited state dipole moment. Excited state has a high value for the dipole moment which indicated a higher degree of charge transfer from the donor to the acceptor moiety on excitation by light. The first hyperpolarizability (beta(ijk)) of the molecule was evaluated assuming the two level model of the first hyperpolarizability.  相似文献   

8.
Summary The collisional complex H-He, with both atoms in their electronic ground-states, is treated as a molecule in self-consistent field (SCF) and multi-reference configuration interaction (MR-CI) calculations to determine interaction energy, dipole moment and spin density as function of internuclear separation. A basis set tailored for long-range interactions was used and the basis set super-position errors were controlled. The resulting functions are analyzed and presented in analytical form, in terms of exchange and damped dispersion contributions. For all three properties there is full agreement with the accurately known long-range coefficients, but the dipole moment function shows rather large overlap effects even at large distances which obscure higher-order dispersion coefficients. The well depth of 22.56 µEh is significantly deeper than most recentab initio calculations and model potentials have suggested, but our number corroborates existing semi-empirical values. Likewise, the calculated spin density variations are more pronounced than recent work has suggested. The resulting hyperfine pressure shift of H atoms in a helium buffer gas is in very good agreement with experiment, except for temperatures of the order of 1 K. Infrared absorption continua associated with the induced dipole moment are evaluated for their astrophysical interest.Dedicated to Prof. W. Kutzelnigg on the occasion of his 60th birthday  相似文献   

9.
The absorption and fluorescence spectra of N-nonyl acridine orange are determined at room temperature (298 K) in cyclohexane, benzene, carbon tetrachloride, chloroform, chlorobenzene and dichloromethane. The ground state of dipole moment was obtained by impedance measurements using Guggenheim-Debeye's method. The experimental excited state dipole moment of N-nonyl acridine orange was determined using Bakhshiev's and Kawski-Chamma-Viallet's formulae and solvent polarity parameter proposed by Reichardt. These experimental results were completed with theoretical results using quantum chemical methods. The experimental (muexp=10.76 D) and theoretical (mucal=9.9 D) dipole moments in the ground and excited state (muexp*=14.56 D) were compared.  相似文献   

10.
近十几年来,汽液平衡盐效应的研究一直是国内外十分活跃的课题.但是,对于多组分含盐体系,特别是多组分羧酸体系,如甲酸-乙酸-水-盐体系的汽液平衡盐效应研究报道甚少。一方面因为多元汽液平衡盐效应的测定较难;另一方面由于盐的加入,使原来的强极性、强缔合的羧酸体系变得更为复杂,给热力学关联带来了困难.尽管有的关联方法引入盐后引起偶极矩改变,且使偏心因子产生相应变化,但在实验上并未得到偶极矩随盐浓度定量变化的关系。  相似文献   

11.
Dielectric measurements as a function of temperature and frequency are reported for non-irradiated and γ-irradiated keratin, the irradiation doses being 5 and 50 kGy. The effect of γ-irradiation on the dielectric permittivity of keratin is not observed up to 190°C. In this temperature range, the values of the relaxation time and dipole moment are similar for non-irradiated and irradiated keratin at the same temperature. The influence of irradiation is manifested as a shift of the parameter (s) peaks associated with the process of denaturation, towards lower temperatures. This fact is supported by lower values of the dipole moment for irradiated than for non-irradiated keratin, as a result of a decrease in the number of polar groups in the side and main chains of the macromolecule in the irradiated samples.  相似文献   

12.
《印度化学会志》2021,98(2):100005
In this study, synthesis, biological activity and structure-activity relationships of diverse compounds are described. In general, the relationships between dipole moment and biological activities are discussed in detail. Despite progress of interdisciplinary science, the use of dipole moment values of organic compounds to understand their potent medicinal activities in various diseases remains unexplored. In contrast, it can be seen that many compounds demonstrate a direct correlation between biological activity and dipole moment. Therefore, analyzing the dipole moment values, scientists may design more potent compounds prior to their synthesis which is tedious, costly and time-consuming.  相似文献   

13.
14.
The dipole moment functions of the titled molecules are written as the sum of a charge and induced atomic dipole contribution and the distance dependence interpreted in terms of these components. These two contributions have opposite signs over a large range of internuclear distances, and when they have equal magnitudes, the dipole moment vanishes. This happens with CO near the equilibrium bond length and is responsible for its small dipole moment. The dipole moment of CS is 0.770(ea0), rather large for a diatomic in which the two atoms have essentially the same electronegativities; this is because for CS, the two components of the dipole moment have the same sign at equilibrium and reinforce one another.  相似文献   

15.
The spectral and photophysical properties of a new intramolecular charge transfer (ICT) probe, namely 4′-dimethylamino-2,5-dihydroxychalcone (DMADHC) were studied in different solvents by using steady-state absorption and emission spectroscopy. Whereas the absorption spectrum undergoes minor change with increasing polarity of the solvents, the fluorescence spectrum experiences a distinct bathochromic shift in the band position and the fluorescence quantum yield increases reaching a maximum before decrease with increasing the solvent polarity. The magnitude of change in the dipole moment was calculated based on the Lippert–Mataga equation. These results give the evidence about the intramolecular charge transfer character in the emitting singlet state of this compound.  相似文献   

16.
A Charge density analysis of CTB molecule in gas phase (Form I ) and the same present at the active site (Form II ) of p300 enzyme were performed for the wave functions obtained from the Density functional method (B3LYP) with the basis set 6‐311G**. This study has been carried out to understand the nature of conformational modification, charge redistribution and the change of electrostatic moments of the CTB molecule when present at the active site of p300. The difference of charge density distribution between both forms of CTB molecule explicitly indicates the effect of intermolecular interaction on CTB molecule in the active site. The dipole moment of CTB in the gas phase (9.6 D) has been significantly decreased (4.27 D) when it present at the active site of p300; this large variation is attributed to the charge redistribution in CTB, due to the intermolecular interaction between the CTB and the receptor p300 molecule. The electrostatic potential maps differentiate the difference of electrostatic potential between the two forms. A large electronegative region is found at the vicinity of oxygen and fluorine atoms. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

17.
Systematic studies on structures, energies, charge transfer, dipole moments, and ionic character of a series of weakly bonded charge transfer (CT) complexes (D⋅AB, D = H2O, H2S, NH3, PH3, AB = F2, Cl2, Br2, I2, BrCl, IBr, ClF, ICl, BrF, IF) have been carried out by the hybrid Hartree–Fock density functional theory (HF‐DFT) method, where those results are validated by available experimental and theoretical investigations. Employing the Hohenberg–Kohn theorem, the property of a multicomponent system is formulated with contributions from both component properties and the charge redistribution (CR) effect, which describes the electronic coupling between components. For any property of a multicomponent system, provided that the intercomponent coupling is weak enough, the first‐order approximation can be applied, which yields a linear correlation of the component contribution to the CR effect. In fact, this kind of linear relationship can be evidenced by all the studied properties including the geometry, energy, charge transfer, dipole moment, and ionic character of all 40 complexes. This approximation quantitatively describes the relative contribution of the components to a given property, which shows the same tendency in a series of complexes. Based on the investigations of the CT effect on the intermolecular bond energy and the total dipole moment, it has been found that the principal bonding character of the title complexes was ascertained to be ionic with the exception of the F2 complexes, which agrees well with the calculated ionic character. The CT effect, though small in a quantitative aspect, is directly connected to various kinds of system properties. The effectiveness and consistency of the present type of calculations in multicomponent systems may allow their wider applications in the study of intermolecular interactions. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 327–338, 2001  相似文献   

18.
The electric dipole moment and the static dipole polarizability of the hydrogen iodide molecule were studied using sophisticated correlated and relativistic methods. Both scalar and spin–orbit relativistic effects were carefully accounted for. We conclude that the large differences between the theoretical and experimental dipole moment, the dipole moment derivative and the polarizability cannot be reconciled by improved account of electron correlation and relativistic effects. The most striking difference between theory and experiment is observed for the polarizability anisotropy. We believe that experimental data, namely the experimental dipole moment (the most recent value is 0.176 au as compared to our best theoretical estimate, 0.154±0.003 au), the parallel polarizability (44.4 and 38.47±0.05 au) and the anisotropy (11.4 and 2.33±0.05 au) must be inaccurate. Experimental and theoretical perpendicular polarizability components (33.0 and 36.14±0.05 au,) and the mean polarizability (36.8 and 36.92±0.05 au) agree better. Our vibrationally corrected relativistic CCSD(T) results represent the most sophisticated predictions of electric properties of HI obtained so far.Contribution to the Björn Roos Honorary Issue  相似文献   

19.
The photophysical properties of a new compound 1-keto-2-(p-dimethylaminobenzal)-tetrahydronaphthalene in various solvents at room temperature were characterized by the absorption and steady-state fluorescence technique. The bathochromic shift on the emission spectra, the broad halfwidth of the fluorescence band and the increase in the excited state dipole moment occurred. These results gave the evidence about the intramolecular charge transfer (ICT) character in the emitting singlet state of the compound.  相似文献   

20.
Infrared fundamental vibrational intensities and quantum theory atoms in molecules (QTAIM) charge-charge flux-dipole flux (CCFDF) contributions to the polar tensors of the fluorochloromethanes have been calculated at the QCISD/cc-pVTZ level. A root-mean-square error of 20.0 km mol(-1) has been found compared to an experimental error estimate of 14.4 and 21.1 km mol(-1) for MP2/6-311++G(3d,3p) results. The errors in the QCISD polar tensor elements and mean dipole moment derivatives are 0.059 e when compared with the experimental values. Both theoretical levels provide results showing that the dynamical charge and dipole fluxes provide significant contributions to the mean dipole moment derivatives and tend to be of opposite signs canceling one another. Although the experimental mean dipole moment derivative values suggest that all the fluorochloromethane molecules have electronic structures consistent with a simple electronegativity model with transferable atomic charges for their terminal atoms, the QTAIM/CCFDF models confirm this only for the fluoromethanes. Whereas the fluorine atom does not suffer a saturation effect in its capacity to drain electronic charge from carbon atoms that are attached to other fluorine and chlorine atoms, the zero flux electronic charge of the chlorine atom depends on the number and kind of the other substituent atoms. Both the QTAIM carbon charges (r = 0.990) and mean dipole moment derivatives (r = 0.996) are found to obey Siegbahn's potential model for carbon 1s electron ionization energies at the QCISD/cc-pVTZ level. The latter is a consequence of the carbon mean derivatives obeying the electronegativity model and not necessarily to their similarities with atomic charges. Atomic dipole contributions to the neighboring atom electrostatic potentials of the fluorochloromethanes are found to be of comparable size to the atomic charge contributions and increase the accuracy of Siegbahn's model for the QTAIM charge model results. Substitution effects of the hydrogen, fluorine, and chlorine atoms on the charge and dipole flux QTAIM contributions are found to be additive for the mean dipole derivatives of the fluorochloromethanes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号