首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
β1,6‐GlcNAc‐transferase (C2GnT) is an important controlling factor of biological functions for many glycoproteins and its activity has been found to be altered in breast, colon, and lung cancer cells, in leukemia cells, in the lymhomonocytes of multiple sclerosis patients, leukocytes from diabetes patients, and in conditions causing an immune deficiency. The result of the action of C2GnT is the core 2 structure that is essential for the further elongation of the carbohydrate chains of O‐glycans. The catalytic mechanism of this metal‐ion‐independent glycosyltransferase is of paramount importance and is investigated here by using quantum mechanical (QM) (density functional theory (DFT))/molecular modeling (MM) methods with different levels of theory. The structural model of the reaction site used in this report is based on the crystal structures of C2GnT. The entire enzyme–substrate system was subdivided into two different subsystems: the QM subsystem containing 206 atoms and the MM region containing 5914 atoms. Three predefined reaction coordinates were employed to investigate the catalytic mechanism. The calculated potential energy surfaces discovered the existence of a concerted SN2‐like mechanism. In this mechanism, a nucleophilic attack by O6 facilitated by proton transfer to the catalytic base and the separation of the leaving group all occur almost simultaneously. The transition state for the proposed reaction mechanism at the M06‐2X/6‐31G** (with diffuse functions on the O1′, O5′, OGlu, and O6 atoms) level was located at C1? O6=1.74 Å and C1? O1=2.86 Å. The activation energy for this mechanism was estimated to be between 20 and 29 kcal mol?1, depending on the method used. These calculations also identified a low‐barrier hydrogen bond between the nucleophile O6H and the catalytic base Glu320, and a hydrogen bond between the N‐acetamino group and the glycosidic oxygen of the donor in the TS. It is proposed that these interactions contribute to a stabilization of TS and participate in the catalytic mechanism.  相似文献   

2.
We report a combined quantum mechanical/molecular mechanical (QM/MM) study on the mechanism of the enzymatic Baeyer-Villiger reaction catalyzed by cyclohexanone monooxygenase (CHMO). In QM/MM geometry optimizations and reaction path calculations, density functional theory (B3LYP/TZVP) is used to describe the QM region consisting of the substrate (cyclohexanone), the isoalloxazine ring of C4a-peroxyflavin, the side chain of Arg-329, and the nicotinamide ring and the adjacent ribose of NADP(+), while the remainder of the enzyme is represented by the CHARMM force field. QM/MM molecular dynamics simulations and free energy calculations at the semiempirical OM3/CHARMM level employ the same QM/MM partitioning. According to the QM/MM calculations, the enzyme-reactant complex contains an anionic deprotonated C4a-peroxyflavin that is stabilized by strong hydrogen bonds with the Arg-329 residue and the NADP(+) cofactor. The CHMO-catalyzed reaction proceeds via a Criegee intermediate having pronounced anionic character. The initial addition reaction has to overcome an energy barrier of about 9 kcal/mol. The formed Criegee intermediate occupies a shallow minimum on the QM/MM potential energy surface and can undergo fragmentation to the lactone product by surmounting a second energy barrier of about 7 kcal/mol. The transition state for the latter migration step is the highest point on the QM/MM energy profile. Gas-phase reoptimizations of the QM region lead to higher barriers and confirm the crucial role of the Arg-329 residue and the NADP(+) cofactor for the catalytic efficiency of CHMO. QM/MM calculations for the CHMO-catalyzed oxidation of 4-methylcyclohexanone reproduce and rationalize the experimentally observed (S)-enantioselectivity for this substrate, which is governed by the conformational preferences of the corresponding Criegee intermediate and the subsequent transition state for the migration step.  相似文献   

3.
The MMP-2 reaction mechanism is investigated by using different computational methodologies. First, quantum mechanical (QM) calculations are carried out on a cluster model of the active site bound to an Ace-Gly approximately Ile-Nme peptide. Along the QM reaction path, a Zn-bound water molecule attacks the Gly carbonyl group to give a tetrahedral intermediate. The breaking of the C-N bond is completed thanks to the Glu 404 residue that shuttles a proton from the water molecule to Ile-N atom. The gas-phase QM energy barrier is quite low ( approximately 14 kcal/mol), thus suggesting that the essential catalytic machinery is included in the cluster model. A similar reaction path occurs in the MMP-2 catalytic domain bound to an octapeptide substrate according to hybrid QM and molecular mechanical (QM/MM) geometry optimizations. However, the rupture of the Gly( P 1) approximately Ile( P 1') amide bond is destabilized in the static QM/MM calculations, owing to the positioning of the Ile( P 1') side chain inside the MMP-2 S 1' pocket and to the inability of simple energy miminization methodologies to properly relax complex systems. Molecular dynamics simulations show that these steric limitations are overcome easily through structural fluctuations. The energetic effect of structural fluctuations is taken into account by combining QM energies with average MM Poisson-Boltzmann free energies, resulting in a total free energy barrier of 14.8 kcal/mol in good agreement with experimental data. The rate-determining event in the MMP-2 mechanism corresponds to a H-bond rearrangement involving the Glu 404 residue and/or the Glu 404-COOH --> N-Ile( P 1') proton transfer. Overall, the present computational results and previous experimental data complement each other well in order to provide a detailed view of the MMPs catalytic mechanism.  相似文献   

4.
The protonation state of His291 in cytochrome c oxidase (CcO), a ligand to the Cu(B) center of the enzyme, has been recently studied in this group by using combined density functional theory (DFT)/electrostatic (QM/MM) calculations. On the basis of these calculations, a model of the proton pumping mechanism of CcO has been proposed. Due to certain technical difficulties, the procedure used in the previous calculation to find partial atomic charges of the QM system for the solvation energy evaluation was not entirely satisfactory; i.e., it was not self-consistent. Here, we describe a procedure that resolves the problem and report on the improved calculations of the protonation state of the His residue. The new procedure fits the protein and reaction field potentials in the region of the QM system with artificial point charges placed on a surface of a sphere surrounding the QM system and a few charges inside the sphere and allows one to perform DFT calculations that involve an inhomogeneous dielectric environment in a self-consistent way. The procedure improves the accuracy of calculations in comparison with previous work. The improved results show, however, that although the absolute energies change significantly the relative energies of the protonated and deprotonated states of His291 remain close to the previously reported ones and therefore do not change significantly the pK(a) values reported earlier. Therefore, our new improved calculations support for the proposed His291 model of the CcO pump.  相似文献   

5.
6.
A cyclin-dependent kinase, Cdk2, catalyzes the transfer of the gamma-phosphate from ATP to a threonine or serine residue of its polypeptide substrates. Here, we investigate aspects of the reaction mechanism of Cdk2 by gas-phase density functional calculations, classical molecular dynamics, and Car-Parrinello QM/MM simulations. We focus on the role of the conserved Asp127 and on the nature of the phosphoryl transfer reaction mechanism catalyzed by Cdk2. Our findings suggest that Asp127 is active in its deprotonated form by assisting the formation of the near-attack orientation of the substrate serine or threonine. Therefore, the residue does not act as a general base during the catalysis. The mechanism for the phosphoryl transfer is a single SN2-like concerted step, which shows a phosphorane-like transition state geometry. Although the resulting reaction mechanism is in agreement with a previous density functional study of the same catalytic reaction mechanism (Cavalli et al., Chem. Comm. 2003, 1308-1309), the reaction barrier is considerably lower when QM/MM calculations are performed, as in this study ( approximately 42 kcal mol(-1) QM vs. approximately 24 kcal mol(-1) QM/MM); this indicates that important roles for the catalysis are played by the protein environment and solvent waters. Because of the high amino acid sequence conservation among the whole family of cyclin-dependent kinases (CDKs), these results could be general for the CDK family.  相似文献   

7.
Hybrid quantum mechanical/molecular mechanical (QM/MM) methods and density functional theory (DFT) were used to investigate the initial ring-opening step in the hydrolysis of moxalactam catalyzed by the dizinc L1 beta-lactamase from Stenotrophomonas maltophilia. Anchored at the enzyme active site via direct metal binding as suggested by a recent X-ray structure of an enzyme-product complex (Spencer, J.; et al. J. Am. Chem. Soc. 2005, 127, 14439), the substrate is well aligned with the nucleophilic hydroxide that bridges the two zinc ions. Both QM/MM and DFT results indicate that the addition of the hydroxide nucleophile to the carbonyl carbon in the substrate lactam ring leads to a metastable intermediate via a dominant nucleophilic addition barrier. The potential of mean force obtained by SCC-DFTB/MM simulations and corrected by DFT/MM calculations yields a reaction free energy barrier of 23.5 kcal/mol, in reasonable agreement with the experimental value of 18.5 kcal/mol derived from kcat of 0.15 s(-1). It is further shown that zinc-bound Asp120 plays an important role in aligning the nucleophile, but accepts the hydroxide proton only after the nucleophilic addition. The two zinc ions are found to participate intimately in the catalysis, consistent with the proposed mechanism. In particular, the Zn(1) ion is likely to serve as an "oxyanion hole" in stabilizing the carbonyl oxygen, while the Zn(2) ion acts as an electrophilic catalyst to stabilize the anionic nitrogen leaving group.  相似文献   

8.
Molecular dynamics simulations have been performed to investigate the role of Mg2+ in the full-length hammerhead ribozyme cleavage reaction. In particular, the aim of this work is to characterize the binding mode and conformational events that give rise to catalytically active conformations and stabilization of the transition state. Toward this end, a series of eight 12 ns molecular dynamics simulations have been performed with different divalent metal binding occupations for the reactant, early and late transition state using recently developed force field parameters for metal ions and reactive intermediates in RNA catalysis. In addition, hybrid QM/MM calculations of the early and late transition state were performed to study the proton-transfer step in general acid catalysis that is facilitated by the catalytic Mg2+ ion. The simulations suggest that Mg2+ is profoundly involved in the hammerhead ribozyme mechanism both at structural and catalytic levels. Binding of Mg2+ in the active site plays a key structural role in the stabilization of stem I and II and to facilitate formation of near attack conformations and interactions between the nucleophile and G12, the implicated general base catalyst. In the transition state, Mg2+ binds in a bridging position where it stabilizes the accumulated charge of the leaving group while interacting with the 2'OH of G8, the implicated general acid catalyst. The QM/MM simulations provide support that, in the late transition state, the 2'OH of G8 can transfer a proton to the leaving group while directly coordinating the bridging Mg2+ ion. The present study provides evidence for the role of Mg2+ in hammerhead ribozyme catalysis. The proposed simulation model reconciles the interpretation of available experimental structural and biochemical data, and provides a starting point for more detailed investigation of the chemical reaction path with combined QM/MM methods.  相似文献   

9.
A complete cycle of chemical transformations for the serine protease prototype reaction is modeled following calculations with the flexible effective fragment quantum mechanical/molecular mechanical (QM/MM) method. The initial molecular model is based on the crystal structure of the trypsin–bovine pancreatic trypsin inhibitor complex including all atoms of the enzyme within approximately 15–18 Å of the oxygen center O of the catalytic serine residue. Several selections of the QM/MM partitioning are considered. Fractions of the side chains of the residues from the catalytic triad (serine, histidine and aspartic acid) and a central part of a model substrate around the C–N bond to be cleaved are included into the QM subsystem. The remaining part, or the MM subsystem, is represented by flexible chains of small effective fragments, whose potentials explicitly contribute to the Hamiltonian of the QM part, but the corresponding fragment–fragment interactions are described by the MM force fields. The QM/MM boundaries are extended over the C–C bonds of the peptides assigned to the QM subsystem in the enzyme, C–C and C–N bonds in model substrates. Multiple geometry optimizations have been performed by using the RHF/6-31G method in the QM part and OPLSAA or AMBER sets of MM parameters, resulting in a series of stationary points on the complex potential-energy surfaces. All structures generally accepted for the serine protease catalytic cycle have been located. Energies at the stationary points found have been recomputed at the MP2/6-31+G* level for the QM part in the protein environment. Structural changes along the reaction path are analyzed with special attention to hydrogen-bonding networks. In the case of a model substrate selected as a short peptide CH3(NHCO-CH2)2 – HN–CO–(CH2–NHCO)CH3 the computed energy profile for the acylation step shows too high activation energy barriers. The energetics of this rate-limiting step is considerably improved, if more realistic model for the substrate is considered, following the motifs of the ThrI11–GlyI12–ProI13-–CysI14–LysI15–AlaI16–ArgI17–IleI18–IleI19 sequence of the bovine pancreatic trypsin inhibitor.  相似文献   

10.
QM/MM methods have been developed as a computationally feasible solution to QM simulation of chemical processes, such as enzyme-catalyzed reactions, within a more approximate MM representation of the condensed-phase environment. However, there has been no independent method for checking the quality of this representation, especially for highly nonisotropic protein environments such as those surrounding enzyme active sites. Hence, the validity of QM/MM methods is largely untested. Here we use the possibility of performing all-QM calculations at the semiempirical PM3 level with a linear-scaling method (MOZYME) to assess the performance of a QM/MM method (PM3/AMBER94 force field). Using two model pathways for the hydride-ion transfer reaction of the enzyme dihydrofolate reductase studied previously (Titmuss et al., Chem Phys Lett 2000, 320, 169-176), we have analyzed the reaction energy contributions (QM, QM/MM, and MM) from the QM/MM results and compared them with analogous-region components calculated via an energy partitioning scheme implemented into MOZYME. This analysis further divided the MOZYME components into Coulomb, resonance and exchange energy terms. For the model in which the MM coordinates are kept fixed during the reaction, we find that the MOZYME and QM/MM total energy profiles agree very well, but that there are significant differences in the energy components. Most significantly there is a large change (approximately 16 kcal/mol) in the MOZYME MM component due to polarization of the MM region surrounding the active site, and which arises mostly from MM atoms close to (<10 A) the active-site QM region, which is not modelled explicitly by our QM/MM method. However, for the model where the MM coordinates are allowed to vary during the reaction, we find large differences in the MOZYME and QM/MM total energy profiles, with a discrepancy of 52 kcal/mol between the relative reaction (product-reactant) energies. This is largely due to a difference in the MM energies of 58 kcal/mol, of which we can attribute approximately 40 kcal/mol to geometry effects in the MM region and the remainder, as before, to MM region polarization. Contrary to the fixed-geometry model, there is no correlation of the MM energy changes with distance from the QM region, nor are they contributed by only a few residues. Overall, the results suggest that merely extending the size of the QM region in the QM/MM calculation is not a universal solution to the MOZYME- and QM/MM-method differences. They also suggest that attaching physical significance to MOZYME Coulomb, resonance and exchange components is problematic. Although we conclude that it would be possible to reparameterize the QM/MM force field to reproduce MOZYME energies, a better way to account for both the effects of the protein environment and known deficiencies in semiempirical methods would be to parameterize the force field based on data from DFT or ab initio QM linear-scaling calculations. Such a force field could be used efficiently in MD simulations to calculate free energies.  相似文献   

11.
To elucidate the catalytic power of enzymes, we analyzed the reaction profile of Claisen rearrangement of Bacillus subtilis chorismate mutase (BsCM) by all electron quantum chemical calculations using the fragment molecular orbital (FMO) method. To the best of our knowledge, this is the first report of ab initio-based quantum chemical calculations of the entire enzyme system, where we provide a detailed analysis of the catalytic factors that accomplish transition-state stabilization (TSS). FMO calculations deliver an ab initio-level estimate of the intermolecular interaction between the substrate and the amino acid residues of the enzyme. To clarify the catalytic role of Arg90, we calculated the reaction profile of the wild-type BsCM as well as Lys90 and Cit90 mutant BsCMs. Structural refinement and the reaction path determination were performed at the ab initio QM/MM level, and FMO calculations were applied to the QM/MM refined structures. Comparison between three types of reactions established two collective catalytic factors in the BsCM reaction: (1) the hydrogen bonds connecting the Glu78-Arg90-substrate cooperatively control the stability of TS relative to the ES complex and (2) the positive charge on Arg90 polarizes the substrate in the TS region to gain more electrostatic stabilization.  相似文献   

12.
Glutathione S-transferases (GSTs) play an important role in the detoxification of xenobiotics in mammals. They catalyze the conjugation of glutathione to a wide range of electrophilic compounds. Phenanthrene 9,10-oxide is a model substrate for GSTs, representing an important group of epoxide substrates. In the present study, combined quantum mechanical/molecular mechanical (QM/MM) simulations of the conjugation of glutathione to phenanthrene 9,10-oxide, catalyzed by the M1-1 isoenzyme from rat, have been carried out to obtain insight into details of the reaction mechanism and the role of solvent present in the highly solvent accessible active site. Reaction-specific AM1 parameters for sulfur have been developed to obtain an accurate modeling of the reaction, and QM/MM solvent interactions in the model have been calibrated. Free energy profiles for the formation of two diastereomeric products were obtained from molecular dynamics simulations of the enzyme, using umbrella sampling and weighted histogram analysis techniques. The barriers (20 kcal/mol) are in good agreement with the overall experimental rate constant and with the formation of equal amounts of the two diastereomeric products, as experimentally observed. Along the reaction pathway, desolvation of the thiolate sulfur of glutathione is observed, in agreement with solvent isotope experiments, as well as increased solvation of the epoxide oxygen of phenanthrene 9,10-oxide, illustrating an important stabilizing role for active site solvent molecules. Important active site interactions have been identified and analyzed. The catalytic effect of Tyr115 through a direct hydrogen bond with the epoxide oxygen of the substrate, which was proposed on the basis of the crystal structure of the (9S,10S) product complex, is supported by the simulations. The indirect interaction through a mediating water molecule, observed in the crystal structure of the (9R,10R) product complex, cannot be confirmed to play a role in the conjugation step. A selection of mutations is modeled. The Asn8Asp mutation, representing one of the differences between the M1-1 and M2-2 isoenzymes, is identified as a possible factor contributing to the difference in the ratio of product formation by these two isoenzymes. The QM/MM reaction pathway simulations provide new and detailed insight into the reaction mechanism of this important class of detoxifying enzymes and illustrate the potential of QM/MM modeling to complement experimental data on enzyme reaction mechanisms.  相似文献   

13.
14.
This article reports a combined quantum mechanics/molecular mechanics (QM/MM) investigation on the acid hydrolysis of cellulose in water using two different models, cellobiose and a 40‐unit cellulose chain. The explicitly treated solvent molecules strongly influence the conformations, intramolecular hydrogen bonds, and exoanomeric effects in these models. As these features are largely responsible for the barrier to cellulose hydrolysis, the present QM/MM results for the pathways and reaction intermediates in water are expected to be more realistic than those from a former density functional theory (DFT) study with implicit solvent (CPCM). However, in a qualitative sense, there is reasonable agreement between the DFT/CPCM and QM/MM predictions for the reaction mechanism. Differences arise mainly from specific solute–solvent hydrogen bonds that are only captured by QM/MM and not by DFT/CPCM. © 2015 Wiley Periodicals, Inc.  相似文献   

15.
The catalytic mechanism of a pyridoxal 5'-phosphate-dependent enzyme, l-serine dehydratase, has been investigated using ab initio quantum mechanical/molecular mechanical (QM/MM) methods. New insights into the chemical steps have been obtained, including the chemical role of the substrate carboxyl group in the Schiff base formation step and a proton-relaying mechanism involving the phosphate of the cofactor in the beta-hydroxyl-leaving step. The latter step is of no barrier and follows sequentially after the elimination of the alpha-proton, leading to a single but sequential alpha, beta-elimination step. The rate-limiting transition state is specifically stabilized by the enzyme environment. At this transition state, charges are localized on the substrate carboxyl group, as well as on the amino group of Lys41. Specific interactions of the enzyme environment with these groups are able to lower the activation barrier significantly. One major difficulty associated with studies of complicated enzymatic reactions using ab initio QM/MM models is the appropriate choices of reaction coordinates. In this study, we have made use of efficient semiempirical models and pathway optimization techniques to overcome this difficulty.  相似文献   

16.
The significance of the quantum-mechanical–molecular-mechanical (QM/MM) method in modeling chemical transformations at the active sites of cholinesterases is discussed. Diverse versions of the QM/MM approach are applied to understand the molecular mechanisms of the reactivation reaction of butyrylcholinesterase phosphorylated by the catalytic serine residue.  相似文献   

17.
Based on hybrid QM/MM molecular dynamics simulation and density functional theoretical (DFT) calculations, we investigate the mechanistic and energetic features of the catalytic action of dizinc metallo-beta-lactamase CcrA from Bacteroides fragilis. The 200 ps QM/MM simulation of the CcrA enzyme in complex with nitrocefin shows that the substrate beta-lactam moiety is directed toward the active site dizinc center through the interactions of aminocarbonyl and carboxylate groups with the two active site zinc ions and the two conserved residues, Lys167 and Asn176. From the determination of the potential energy profile of a relevant enzymatic reaction model, it is found that the nucleophilic displacement reaction step proceeds with a low-barrier height, leading to the formation of an energetically favored reaction intermediate. The results also show that the high catalytic activity of the CcrA enzyme stems from a simultaneous operation of three catalytic components: activation of the bridging hydroxide nucleophile by zinc-coordinated Asp86; polarization of the substrate aminocarbonyl group by the first zinc ion; stabilization of the negative charge developed on the departing amide nitrogen by the second zinc ion. Consistent with the previous experimental finding that the proton-transfer reaction step is rate-limiting, the activation energy of the second step is found to be 1.6 kcal/mol higher than that of the first step. Finally, through an examination of the structural and energetic features of binding of a thiazolidinecarboxylic acid inhibitor to the active site dizinc center, a two-step inhibition mechanism involving a protonation-induced ligand exchange reaction is proposed for the inhibitory action of a tight-binding inhibitor possessing a thiol group.  相似文献   

18.
The dynamics of the IMP-1 enzyme complexed with three prototypical inhibitors are investigated using a quantum mechanical/molecular mechanical (QM/MM) method based on the self-consistent-charge density-functional tight-binding model. The binding patterns of the inhibitors observed in X-ray diffraction experiments are well reproduced in 600 ps molecular dynamics simulations at room temperature. These inhibitors anchor themselves in the enzyme active site by direct coordination with the two zinc ions, displacing the hydroxide nucleophile that bridges the two zinc ions. In addition, they also interact with several active-site residues and those in two mobile loops. The excellent agreement with experimental structural data validates the QM/MM treatment used in our simulations.  相似文献   

19.
The theoretical QM/MM study of the reaction catalysed by phosphonoacetaldehyde hydrolase indicates a possible alternative mechanism of the P-C bond cleavage: as opposed to the mechanism proposed earlier and that involved formation of a covalently bound intermediate (Schiff-base), in the new mechanism, the bond breaking process is facilitated by proton transfer from catalytic lysine residue to the substrate.  相似文献   

20.
Macrophomate synthase (MPS) of the phytopathogenic fungus Macrophoma commelinae catalyzes the transformation of 2-pyrone derivatives to the corresponding benzoate analogues. The transformation proceeds through three separate chemical reactions, including decarboxylation of oxalacetate to produce pyruvate enolate, two C-C bond formations between 2-pyrone and pyruvate enolate that form a bicyclic intermediate, and final decarboxylation with concomitant dehydration. Although some evidence suggests that the second step of the reaction catalyzed by MPS is a Diels-Alder reaction, definite proof that the C-C bond formations occur via a concerted mechanism is still required. An alternative route for formation of the C-C bonds is a stepwise Michael-aldol reaction. In this work, mixed quantum and molecular mechanics (QM/MM) combined with Monte Carlo simulations and free-energy perturbation (FEP) calculations were performed to investigate the relative stabilities of the transition states (TS) for both reaction mechanisms. The key results are that the Diels-Alder TS model is 17.7 and 12.1 kcal/mol less stable than the Michael and aldol TSs in the stepwise route, respectively. Therefore, this work indicates that the Michael-aldol mechanism is the route used by MPS to catalyze the second step of the overall transformation, and that the enzyme is not a natural Diels-Alderase, as claimed by Ose and co-workers (Nature 2003, 422, 185-189; Acta Crystallogr. 2004, D60, 1187-1197). A modified link-atom treatment for the bonds at the QM/MM interface is also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号