首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Classical molecular dynamics modelling has been used to obtain new models of 50CaO·50P2O5 and 50MgO·50SiO2 glasses and, together with previously published models of 63CaO·37Al2O3, and 50CaO·50SiO2 glasses, these have been inspected to evaluate structural features. For the first time, models of glasses near the eutectic in three systems, aluminate, silicate, and phosphate, with the same modifier, Ca, have been compared. All have short range order which is similar to that in crystals of the same composition, 5CaO·3Al2O3, CaSiO3 and Ca(PO3)2. There is a clear trend in bonding of bridging oxygen to Ca, which is dominant in aluminate glass, common in silicate glass, and absent in phosphate glass. Preliminary results for 50MgO·50SiO2 glass show unusual behaviour because ~ 5% of oxygen is present as “non-network” oxygen, i.e. bonded only to Mg. The models show broader Qn distributions than seen in NMR experiments, and this remains an area for improvement of MD modelling of glasses. The distributions of Ca in the models have been studied using the pair distribution function TCaCa(r) which is found to be similar in the three glasses, and also similar to the previous experimental measurement for 50CaO·50SiO2 glass. The distributions of Ca are markedly different in the glasses compared to the crystals, being isotropic in the former and anisotropic in the latter, which should be a factor in glass forming ability.  相似文献   

2.
Using Born–Mayer–Huggins potentials, a molecular dynamics model of a series of 5-oxide (SiO2, B2O3, Na2O, Al2O3, and ZrO2) glasses of various compositions was developed. The evolution of the glass structure according to the composition provides an overview of the behavior of each species. Some experimental observations were correctly reproduced, e.g., the gradual incorporation of the boron in the silicate network, the attraction of sodium atoms by four-coordinate boron, and the shorter distances between network formers and non-bridging oxygen atoms. Moreover, direct visualization of the structures reveals boron-enriched segregation zones in a composition containing no aluminum, as well as smaller regions comprising only aluminum atoms.  相似文献   

3.
《Journal of Non》1997,217(1):99-105
27Al and 29Si MAS NMR studies were performed on roller-quenched SiO2Al2O3-glasses with Al2O3 contents ranging from 10 to 60 mol% and on SiO2Al2O3Na2O glasses containing 10 mol% Al2O3 and 2.5 to 10 mol% Na2O. Pure aluminium silicate glasses show NMR peaks at 0, 30 and 60 ppm. The frequency distribution of the different Al-sites is not affected by the glass composition. In glasses of the system SiO2Al2O3Na2O the 30 ppm peak decreases to zero as the Na2O content increases. The 30 ppm peak is assigned to distorted triclustered AlO-tetrahedra, rather than to fivefold coordinated Al. Triclustering of tetrahedra may provide for charge neutrality in glasses with molar excess of Al2O3 over Na2O. As charge balance is increasingly achieved by addition of alkali ions, the tendency of tetrahedral triclustering is reduced, reflected by the disappearance of the 30 ppm peak in glasses containing ≥ 7.5 mol% Na2O.  相似文献   

4.
R.G. Kuryaeva 《Journal of Non》2009,355(3):159-163
The refractive index for glass of the CaO · Al2O3 · хSiO2 system with х = 6 in the range of pressures up to 6.0 GPa was measured using a polarization-interference microscope and an apparatus with diamond anvils. The changes in the relative density characterizing the compressibility of glass were estimated from the measured refractive indices within the framework of the theory of photoelasticity. The data were compared with the previous data for glasses of the same system with х = 2 and 4. The most compressible of the three glasses in the range 2.0-6.0 GPa was the CaO · Al2O3 · 6SiO2 glass. For glasses with х = 2, 4 and 6 we calculated the degrees of polymerization of silicon-aluminum-oxygen network, NBO/T (NBO - non-bridging oxygen), which are determined as the ratio of the number of gram-ions of non-bridging oxygen atoms to the total number of gram-ions of network formers. The structure-chemical parameter NBO/T was calculated with due regard for the formation of triclusters and highly coordinated aluminum. The degree of polymerization of the CaO · Al2O3 · хSiO2 glasses increases with increasing х, which agrees with the change of their relative density under pressure.  相似文献   

5.
Raman spectra of some ternary and quaternary glasses in the system Na2OCaOMgOAl2O3SiO2 are presented. The spectra are interpreted in terms of the structural alteration of the glass as the composition is altered from the binary end members to more complicated glasses. Addition of CaO and MgO to soda-silica glasses act only to increase the disorder of the network slightly. Addition of Al2O3 greatly modifies the network. In some soda-lime-aluminosiliscate compositions an estimate can be made of the amount of aluminum in four- and six-fold coordination. It is shown that the amounts of four- and sixfold coordinated aluminum depend on the glass composition.  相似文献   

6.
Phase separation in sodium-aluminoborosilicate glasses was systematically studied as a function of Gd2O3 concentration with transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), and electron energy loss spectroscopy (EELS) methods. Gadolinium-induced phase separation in the glasses can be consistently explained by proposing that Gd cations partition to the borate-rich environments and subsequent agglomeration of the Gd-borate moieties, or short-range ordered structural groups, in the glass. Agglomeration of the Gd-borate rich environments is further discussed within the context of excess metal oxides, [Na2O]ex or [Al2O3]ex=|Na2O-Al2O3|, and excess B2O3, [B2O3]ex, available for incorporating Gd cations. Results showed that agglomeration of the Gd-borate rich environments occurred at a much lower Gd2O3 concentration in the glass without [Na2O]ex or [Al2O3]ex and at a significantly higher Gd2O3 concentration in the glass with either [Na2O]ex or [Al2O3]ex. Assuming 1BO4:1Gd:2BO3 (based on literature-reported Gd-metaborate structure) as a local Gd-borate environment in glass, we introduced the saturation index of boron, SI[B]=Gd2O3/(1/3[B2O3]ex), to examine the glass susceptibility to Gd-induced phase separation for all three alkali-aluminoborosilicate systems. While our results have provided some insight to the glass structure, they also provide insight to the mechanism by which the metal oxide is dissolved into the melt. This appears to occur predominately through boron complexation of the metal oxide.  相似文献   

7.
The leaching of some binary and ternary lithium silicate glasses and their respective glass-ceramics by HCl is reported.The leaching rate of lithium silicate glasses gradually decreases with the decrease of the percentage of Li2O or by the introduction of small amounts of a third component, e.g. Al2O3, MgO, ZnO or B2O3. With a further increase in the proportions of B2O3 or ZnO the rate of leaching increases. The rate of leaching is also substantially modified by the conversion of glasses into glasses-ceramics.The results obtained are discussed in terms of the effects of the different ions on the rate of the interdifussion of the lithium and hydrogen ions in the glass and the leached layer, the phase separation developed in the glass, the type and concentration of crystalline phases developed in glass-ceramics and the composition of the residual glass phase.  相似文献   

8.
The phase separation and crystallization behavior in the system (80 − X)SiO2 · X(Al2O3 + P2O5) · 5B2O3 · 15Na2O (mol%) glasses was investigated. Glasses with X = 20 and 30 phase separated into two phases, one of which is rich in Al2O3-P2O5-SiO2 and forms a continuous phase. Glasses containing a larger amount of Al2O3-P2O5 (X = 40 and 50) readily crystallize and precipitates tridymite type AlPO4 crystals. It is estimated that the phase separation occurs forming continuous Al2O3-P2O5-SiO2 phase at first, and then tridymite type AlPO4 crystals precipitate and grow in this phase. Highly transparent glass-ceramics comparable to glass can be successfully obtained by controlling heat treatment precisely. The crystal size and percent crystallinity of these transparent glass-ceramics are 20-30 nm and about 50%, respectively.  相似文献   

9.
The liquidus temperature (TL) and the equilibrium mass fraction of spinel were measured in the regions of low-silica (less than 42 mass% SiO2) high-level waste borosilicate glasses within the spinel primary phase field as functions of glass composition. The components that varied, one at a time, were Al2O3, B2O3, Cr2O3, Fe2O3, Li2O, MnO, Na2O, NiO, SiO2, and ZrO2. In the low-silica region, Cr2O3 increased the TL substantially less, and Li2O and Na2O decreased the TL significantly less than in the region with 42-56 mass% SiO2. The temperature at which the equilibrium mass fraction of spinel was 1 mass% was 25-64 °C below the TL.  相似文献   

10.
The environment of Nd3+ ions has been studied using optical absorption spectroscopy and EXAFS at the Nd L3-edge, in a series of soda lime aluminoborosilicate glasses with increasing B2O3 content. The proportion of BO4 units has been determined by 11B MAS NMR in an equivalent glass series with La3+ ions replacing the majority of Nd3+ ions, and complementary information has been obtained by measuring the Nd3+ decay fluorescence times in these latter glasses. In these glasses with low Al2O3 content, the R′ ratio, with R′ = [Na2Oexc] / [B2O3] and [Na2Oexc] = [Na2O] − [Al2O3] − [ZrO2], plays a key role in controlling the structural organization and crystallization resistance, in a similar way as the R ratio in the Dell and Bray model of sodium borosilicate glasses. At R′ > 0.5, the Nd3+ ions are located in a mixed silicate-borate environment and, by slow cooling of the melt, they tend to crystallize within a silicate apatite phase close to the Ca2Nd8(SiO4)6O2 composition. At R′ < 0.5, the structural results are compatible with Nd3+ ions located in a borate-type environment (not excluding Si neighbors), and, by slow cooling of the melt, they segregate with Ca2+ ions within a Si-depleted separated borosilicate phase.  相似文献   

11.
Hong Li  Jinshu Cheng  Liying Tang 《Journal of Non》2008,354(12-13):1418-1423
Extensive corrosion experiments on electrocast alumina–zirconia–silica (AZS) refractories by molten CaO–Al2O3–SiO2 (CAS) and Na2O–CaO–SiO2 (NCS) glasses were carried out at various temperatures under static condition. The features and mechanism of the corrosion were compared and analyzed. The changes of microstructure and phase composition of refractories in the course of the melt corrosion were also studied. X-ray diffraction (XRD), scanning electron microscope (SEM) and chemical analysis were used to characterize the corroded refractory materials and reacted melts. The reasons of alumina–zirconia–silica bricks corroded are the meltdown of their own composition, penetration or permeation of alkali oxide in the glass melt and scouring of the glass melt. The results show that the refractories resistance against corrosion of the oxides like Na2O, K2O or CaO is weak, and that the corrosion mechanism of NCS/AZS is different from that of CAS/AZS. In a static condition, CaO–Al2O3–SiO2 melts corroded alumina–zirconia–silica brick more severely than Na2O–CaO–SiO2. The result provides useful reference to a prospective selection of refractory materials in glass and glass–ceramics manufacture.  相似文献   

12.
Glass-forming regions of the systems Na2SSiO2 and Na2SB2O3 have been investigated in order to clarify whether Na2S could be substituted for Na2O in sodium silicate or borate glasses, and the results were interpreted in terms of the structures of silicate and borate glasses. No difference was found in the glass-forming range of SiO2 content between the Na2SSiO2 and Na2OSiO2 systems, and the red color of Na2SSiO2 glasses suggests that the formation of polysulfides in the glass structure is probably due to the entrance of sulfur ions in the non-bridging sites of the glass network. On the other hand, not all of the sulfur added to the glass batches could be retained in the Na2SB2O3 glasses and the amount remaining in the glass products changed depending upon the amount of sodium ions in the glasses. Only a trace of sulfur was observed in the glasses containing less than 13 mol% of Na2S in the batches, but the sulfur content in the glasses increased steeply with sodium content up to 35 mol%, reached the maximum and then decreased slowly with sodium content. The insolubility of sulfur in the glasses with low sodium content was interpreted based on the compositional dependence of basicity of alkali-borate glasses, and the change in solubility of sulfur with sodium concentration was explained based on the well-known boron anomaly caused by the change in the coordination state of boron and on the formation of non-bridging oxygens or sulfurs in the glass structure.  相似文献   

13.
This work studied the properties of glasses with the molar composition 63.8SiO2-(11.6-x)Na2O-(0.7 + x)B2O3-19.2CaO-3MgO-1.5Al2O3-0.2P2O5, in which x = 0, 1, 2, 3. These glasses are of interest for the development of slowly dissolving fibers to be incorporated in composites for medical applications. The thermal properties were recorded using hot stage microscopy, differential thermal analysis, and heat treatments in the range of 800°-1000 °C. The glass crystallization behavior was determined based on calculated values of the activation energy of crystallization and the Johnson-Mehl-Avrami exponent. The structural units in the glass network were identified using infrared spectroscopy. Finally, in vitro dissolution was tested in SBF solution.The addition of B2O3 increased the glass transition temperature and reduced the working temperature. When heat treated at 900 °C, the glass with the smallest amount of B2O3 formed two crystalline phases: magnesium silicate MgSiO3 and wollastonite CaSiO3. In the other compositions, only CaSiO3 was observed after heat treatment at 950 °C. All the glasses crystallized preferentially from the surface. Changes in the liquidus and crystallization temperatures were related to changes in the glass structure. The formation of [BO3] units led to glasses with improved resistance to crystallization and decreased liquidus temperature. In the glasses with 2.7 and 3.7 mol% B2O3, [BO3] units were transformed into [BO4] units. The formation of [BO4] led to an increase in fragility and a decrease in resistance to crystallization. All the glasses dissolved slowly in simulated body fluid.  相似文献   

14.
In MoO3–Nd2O3–B2O3 and MoO3–Nd2O3–La2O3–B2O3 systems, glasses were obtained in the region between 20 and 30 mol% Ln2O3. A liquid-phase separation region was observed near the MoO3–B2O3 side up to 20 mol% Ln2O3 (La, Nd). The amorphous phases were characterized by X-ray diffraction (XRD), differential thermal analysis (DTA), UV–VIS and infrared spectroscopy (IR). According to DTA data B2O3-rich glasses are stable up to 630 °C while glasses rich in MoO3 are stable up to 430 °C. The glasses are transparent in the visible region. Structural models for the glasses network were suggested on the basis of IR spectral investigations. It was established that BO3 (1380 cm−1), BO4 (1100–950 cm−1) and MoO4 (860 cm−1) groups build up the glass network. MoO6 units (band at 880 cm−1) together with BO3 units participate in the formation of the glass network with a high MoO3 content (80–90 mol%).  相似文献   

15.
Hongxia Lu 《Journal of Non》2007,353(26):2528-2544
Tracer diffusion coefficients of the radioactive isotope Na-22 were measured in glasses of the type (CaO·Al2O3)x(2 SiO2)1−x to study the diffusion of sodium as a function of glass composition, x, temperature and initial water content. The diffusion of Na-22 in glasses diffusion-annealed in dry air can always be well described by a single tracer diffusion coefficient, but sometimes not in samples annealed in common air. It was found that the sodium tracer diffusion coefficient decreases by about six orders of magnitude when the glass composition x changes from 0 to 0.75 at 800 °C. The temperature dependence of the diffusion of sodium seems to decrease as the silica content increases. Variations of the initial water content in some of the glasses investigated did not very significantly influence the rate of the tracer diffusion of sodium.  相似文献   

16.
The solubility of Ag2O was measured for the Na2O–B2O3 and Na2O–B2O3–Al2O3 system with the rotating crucible method and static method, respectively, under air atmosphere at temperatures ranging from 1273 to 1423 K. The contamination of melts from crucibles could be avoided by the rotating crucible method, with which it became possible to measure the solubility of Ag2O for the Na2O–B2O3 system above the melting point of Ag for the first time. It was found that the addition of Na2O decreases the solubility of Ag2O while the addition of Al2O3 had little effect on the solubility. The effect of Na2O and Al2O3 on the solubility of Ag2O is expressed by interaction coefficients and is analyzed in terms of the basicity of melts. The solubility of Ag2O in Na2O–B2O3–Al2O3 melts increased with increased temperature. This phenomena was explained by a small enthalpy change in oxidation of silver.  相似文献   

17.
A new approach is proposed to explain the strong difference between the induction periods (nucleation time-lags) obtained from nucleation rate measurements and from crystal growth experiments for lithium silicate glasses; and their similar magnitude for a Na2O · 2CaO · 3SiO2 glass. For these two glass families, the time-lags for nucleation estimated from crystal growth kinetics were compared with those directly obtained from nucleation experiments. A theoretical analysis was performed employing analytical solutions of the Frenkel-Zeldovich equation. In such analysis, the frequently assumed condition of size-independence of the thermodynamic properties of the crystallites was used. Provided this assumption is correct, time-lag data obtained in the two above mentioned ways should coincide. Consequently the significant difference between the values of nucleation time-lag for lithium silicate glasses from nucleation and growth data gives a strong indirect evidence for the deviation of the properties of critical nuclei from the respective parameters characterizing the state of the newly evolving macrophase. For Na2O · 2CaO · 3SiO2 glass at intermediate stages of crystallization we show that the average composition of the growing crystals is close to that of the near-critical nuclei. The fact that the nucleation and growth rates of this soda-lime-silica glass refer to the same phase provides an explanation for the similarity of the induction periods estimated from nucleation and growth experiments.  相似文献   

18.
Measurements of the critical stress intensity factor KIc are reported for glasses in the Na2OSiO2, PbOSiO2, ZnOB2O3, PbOB2O3, Na2OGeO2 and 20Na2O?(80 ? x) B2O3 ? xSiO2 systems. The variations of KIc with composition are not directly related to the simultaneous variations of Young's modulus. A tentative interpretation is given.  相似文献   

19.
I. Dyamant  E. Korin 《Journal of Non》2008,354(27):3135-3141
Glasses in the La2O3−CaO−B2O3 ternary system were studied. The glass forming range as determined by the appearance of the annealed cast was found to match previously published findings. Clear glasses were formed in the composition range of 5.7−19.1 mol% La2O3 with constant B2O3 content of 71.4 mol%, and in glasses of constant La2O3:CaO ratio of 1:4 with B2O3 content in the range of 71.4-55.0 mol%. The non-linear optical crystalline phase La2Ca2B10O19 was crystallized from the clear glasses after heat treatments, as determined by powder XRD. Two types of the LaBO3 crystalline phases were detected in the partially and the fully crystallized glass compositions outside the glass forming range. Data are reported for the glass transition temperature (Tg), dilatometric softening point (Td), linear coefficient of expansion (α), onset crystallization temperature (Tx), exothermal peak temperature (TP), density (ρ) and index of refraction (nD) in the clear glasses.  相似文献   

20.
We report on the effect of BaO on the crystallization kinetics of glasses in the diopside (CaMgSi2O6)-Ca-Tschermak (CaAl2SiO6) system. Partial substitution (i.e. 5%, 10% and 20%) of Ba2+ for Ca2+ was attempted in composition CaMg0.8Al0.4Si1.8O6, in three different glasses while partial substitution of B3+ for Al3+ was made in the fourth glass. Structural investigations on the glasses have been made by density measurements, molar volume and Infra-red spectroscopy (FTIR). Non-isothermal crystallization kinetic studies have been employed to study the mechanism of crystallization in all the four glasses. The Avrami parameter for the glass powders is ∼2, indicating the existence of intermediate mechanism of crystallization. Crystallization sequence in the glasses has been followed by X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM) and FTIR. Augite crystallized out being the dominant phase in all the glass-ceramics, while different polymorphs of BaAl2Si2O8 were present as secondary or minor phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号