首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The adsorption property of the polyampholyte gel composed of sodium styrene sulfate (SSS) and vinylbenzyl trimethylammonium chloride (VBTA) has been investigated with several hydrophobic aromatic compounds as adsorbate. Using the N-isopropylacrylamide (NIPA) gel, the corresponding experiments were also performed for comparison. At room temperature, the NIPA gel hardly adsorbed the aromatic compounds, while it adsorbed them at higher temperatures. As for the SSS-VBTA gel, the adsorption amounts of the polyaromatic compounds decreased with increasing temperature, while the adsorption amounts of the monoaromatic compounds were almost independent of temperature and smaller than those of the polyaromatic compounds. These results indicate that the aromatic rings in the SSS-VBTA gel may play an important role in the adsorption of the aromatic compounds. Also, it has been demonstrated that the SSS-VBTA gel can repeatedly adsorb bisphenol-A at room temperature and desorb it at higher temperature by the temperature-swing operation: this behavior is diametrically opposite to that of the NIPA gel. This shows that the SSS-VBTA gel is much more suitable for the adsorption removal of the hydrophobic aromatic compounds from very dilute aqueous solutions, because a vast amount of energy is required for heating a large amount of water when using the NIPA gel.  相似文献   

2.
In this paper, N‐isopropylacrylamide (NIPA) was synthesized by acrylonitrile and isopropanol. Poly(N‐isopropylacrylamide) (PNIPA) was prepared by a chemical method. The dependence of its swelling behavior on temperature was studied. Results showed that PNIPA hydrogel was a temperature‐sensitive gel. Its LCST (lower critical solution temperature) was about 32 °C, and its swelling ratio (at 20 °C) was about 17–18. Sodium acrylate (SA) and sodium methylacrylate (SMA) were copolymerized with NIPA respectively. Equilibrium swelling ratios of the copolymer hydrogels at lower temperature were two to three times that of PNIPA. The LCST of the copolymer hydrogels could be controlled between 32 and 45 °C by adjusting the content of SA or SMA. Kinetics of P(NIPA‐co‐SA) hydrogels, whether swelling or shrinking processes, were in good agreement with apparent second order kinetic equations. Several experiments were designed to separate aqueous bovine serum albumin solution using the hydrogels prepared above. The separation efficiency was about 80%. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

3.
In this research, the herbaceous peat collected from Gavurgolu peatlands, one of the biggest Turkish peatlands, was utilized as an adsorbent for the removal of copper (II) ions from aqueous solution. Adsorption experiments were conducted under various conditions, i.e., initial concentration, temperature, and pH. While the amount of Cu (II) adsorbed on the peat increased with increasing concentration of Cu (II) ions, it was not markedly affected by temperature and pH. Percentage removal was higher at lower concentration. For example, the maximum percentage removal of Cu (II) ions for initial concentration of 3 x 10(-4) M was 97.04% at 21 degrees C and pH 5.5. The adsorption capacity (Q(0)) of the peat was 4.84 mgg(-1) from Langmuir adsorption isotherm for the concentration range of 3 x 10(-4)-6 x 10(-4) M at 21 degrees C and pH 5.5. The equilibrium time of adsorption of Cu (II) ions was 150 min and independent of concentration and temperature. The amount of Cu (II) adsorbed at equilibrium time did not considerably change with temperature and pH. It was also determined that adsorption isotherm followed both Freundlich and Langmuir. Uptake mechanism of Cu (II) ions by the peat occurs via cation exchange (especially by means of Ca(2+) and Mg(2+)) as well as copper/peat complexation. Adsorption kinetic was consistent with the pseudo-second-order model.  相似文献   

4.
The leached residue, generated after selective extraction of Cu, Ni, and Co in sulfur dioxide-ammonia leaching of manganese nodules, was characterized and batch isothermal adsorption experiments were conducted at ambient temperature to evaluate the effectiveness of the water-washed leached residue for removal of different bivalent metal ions from aqueous synthetic solutions. The effects of pH, initial metal ion concentrations, amount of adsorbent, interfering ions, and heat treatment were also investigated. The uptake of metal ions increased with increasing pH. Under identical conditions the adsorption capacity increased in the order Cd(2+)相似文献   

5.
Kuroda R  Kondo T  Oguma K 《Talanta》1972,19(9):1043-1048
Only a few metals can be adsorbed on DEAE-cellulose from aqueous thiocyanate-chloride media. However, several metal ions, including Cu(II), Zn, Cd, In, Bi and U(VI), exhibit enhanced adsorption on DEAE-cellulose from methanol-thiocyanate-hydrochloric acid mixtures. The distribution coefficients for these metals are given as functions of methanol, ammonium thiocyanate and hydrochloric add concentration. Differences in adsorption among metals permit many useful separations, including those of two-, three- and four-component mixtures, on short columns containing 1-1.5 g of DEAE-cellulose.  相似文献   

6.
Fe3O4 magnetic nanoparticles were synthesized by co-precipitation method. The structural characterization showed an average nanoparticle size of 8 nm. The synthesized Fe3O4 nanoparticles were tested for the treatment of synthetic aqueous solutions contaminated by metal ions, i.e. Pb(II), Cu(II), Zn(II) and Mn(II). Experimental results show that the adsorption capacity of Fe3O4 nanoparticles is maximum for Pb(II) and minimum for Mn(II), likely due to a different electrostatic attraction between heavy metal cations and negatively charged adsorption sites, mainly related to the hydrated ionic radii of the investigated heavy metals. Various factors influencing the adsorption of metal ions, e.g., pH, temperature, and contacting time were investigated to optimize the operating condition for the use of Fe3O4 nanoparticles as adsorbent. The experimental results indicated that the adsorption is strongly influenced by pH and temperature, the effect depending on the different metal ion considered.  相似文献   

7.
In this work, we study the elimination of three bivalent metal ions (Cd2+, Cu2+, and Pb2+) by adsorption onto natural illitic clay (AM) collected from Marrakech region in Morocco. The characterization of the adsorbent was carried out by X-ray fluorescence, Fourier transform infrared spectroscopy and X-ray diffraction. The influence of physicochemical parameters on the clay adsorption capacity for ions Cd2+, Cu2+, and Pb2+, namely the adsorbent dose, the contact time, the initial pH imposed on the aqueous solution, the initial concentration of the metal solution and the temperature, was studied. The adsorption process is evaluated by different kinetic models such as the pseudo-first-order, pseudo-second-order, and Elovich. The adsorption mechanism was determined by the use of adsorption isotherms such as Langmuir, Freundlich, and Temkin models. Experiments have shown that heavy metals adsorption kinetics onto clay follows the same order, the pseudo-second order. The isotherms of adsorption of metal cations by AM clay are satisfactorily described by the Langmuir model and the maximum adsorption capacities obtained from the natural clay, using the Langmuir isotherm model equation, are 5.25, 13.41, and 15.90 mg/g, respectively for Cd(II), Cu(II), and Pb(II) ions. Adsorption of heavy metals on clay is a spontaneous and endothermic process characterized by a disorder of the medium. The values of ΔH are greater than 40 kJ/mol, which means that the interactions between clay and heavy metals are chemical in nature.  相似文献   

8.
A novel optimized chelating hydrogel was synthesized via graft copolymerization of acrylamide and 2‐hydroxyethyl methacrylate (as two‐dentate chelating co‐monomer) onto salep (a multicomponent polysaccharide obtained from dried tubers of certain natural terrestrial orchids) using N,N′‐methylenebisacrylamide as a crosslinker and ammonium persulfate as an initiator. Reaction parameters (N,N′‐methylenebisacrylamide and ammonium persulfate amounts as well as acrylamide/2‐hydroxyethyl methacrylate weight ratio) affecting the water absorption of the chelating hydrogel were optimized using a systematic method to achieve a hydrogel with high swelling capacity as possible. Heavy metal ion adsorption capacity of the optimized hydrogel for metal ions [Cu (II), Pb (II), Cd (II), and Cr (III)] were investigated in aqueous media containing different concentrations of these ions (5–50 ppm). The results showed that the hydrogel have great potential for heavy metal removal from aqueous solutions. The hydrogel formation was confirmed by Fourier transform infrared spectroscopy, and surface morphology study of the hydrogel was performed by scanning electron microscope. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
陆大年  陈涛  胡英 《化学学报》1994,52(10):975-979
本文采用Cu(Ⅱ)自旋探针法研究了N- 取代基丙烯酰胺水凝胶在不同温度时的ESR谱,发现不同的温度敏感性水凝胶.其Cu(Ⅱ)探针的ESR各向异性谱的变化也不同.这主要是由于取代基与Cu(Ⅱ)的相互作用不同所致.对于具有LCST相行为的NNPA 和NIPA水凝胶,当温度达到并超过其相转变温度时,即可测得其Cu(Ⅱ)自旋探针各向异性的ESR倒置谱,这种倒置谱是由于凝胶相变后,网格塌陷,网络缠裹水化Cu(Ⅱ)离子的结果.运用Cu(Ⅱ)自旋探针研究凝胶的相结构及其微观相行为是一种可行的方法  相似文献   

10.
Su ZX  Pu QS  Luo XY  Chang XJ  Zhan GY  Ren FZ 《Talanta》1995,42(8):1127-1133
A new functional resin with a long functional side chain was synthesized by modification of aminated macroporous poly(vinyl chloride) resin with cyanoethylene and ethylenediamine. Traces of Au(III), Pt(IV) and Pd(II) in aqueous solution were quantitatively adsorbed in the acidity range of pH 4 and C(H(+)) 3 M. The rate of equilibration is high; Cu(2+), Fe(3+), Ni(2+), etc. exhibit little interference on the adsorption of the sought noble metals. The saturated adsorption capacities for Au(III), Pt(IV), Pd(II) and Ir(IV) in 2 M HCl were 4.0, 1.57, 2.26, 1.85 mmol g(-1). Adsorbed ions can be quantitatively desorbed by 4% thiourea +0.25 M H(2)SO(4). The resin has good reusability, and can be used for preconcentration and separation of Au(III), Pt(IV) and Pd(II) prior to their determination by ICP-AES with satisfactory results.  相似文献   

11.
The pristine montmorillonite (P-Mt) was modified with sodium dodecyl benzene sulfonate (SDBS) to form SDBS montmorillonite (SDBS-Mt) for the purpose of enhancing the removal performance of Cu(II) from aqueous solution. The materials were characterized by means of XRD, SEM-EDS, BET, and FTIR to analyze the surface morphology and structure. SDBS-Mt displayed a higher adsorption capacity than P-Mt. The adsorption kinetic model and the adsorption isotherm model are depicted by the pseudo-second-order kinetic equation and the Langmuir equation, respectively. The adsorption of Cu(II) on SDBS-Mt is a spontaneous and endothermic process. The order of influence of coexisting cations on the adsorption of Cu(II) is Ni(II) > Co(II) > Zn(II). In addition, the adsorbent has great regeneration performance after five cycles of regeneration. The main mechanisms of Cu(II) adsorption by SDBS-Mt may include electrostatic attraction, ion exchange, and complexation of sulfonate groups. In brief, SDBS-Mt may be a promising, simple, and low-cost adsorbent for the treatment of Cu(II) in aqueoussolutions.  相似文献   

12.
Novel type hydrogel‐clay nanocomposites based on the acrylamide (AAm)‐ 2‐acrylamido‐ 2‐methylpropane sulfonic acid (AMPS) sodium salt and clay were synthesized via in situ copolymerization in aqueous solution. Samples were characterized by determining total basic group (TGB) content and swelling degree, XRD analysis, and FTIR spectroscopy. Effects of monomer ratio and clay amount on the swelling properties of the samples were investigated. It was found that the hydrogel/clay nanocomposites exhibited improved swelling capacity compared with the hydrogels. Samples were used to remove heavy metal ions (Cu (II), Cd (II), and Pb (II)) from aqueous solution in competitive and non‐competitive conditions for the first time. The effects of time and pH of the initial metal ion solution on the adsorption capacity were investigated and selectivity properties of the samples were evaluated. It was found that incorporation of a low amount of clay (10% (wt)) into the polymer structure increased the heavy metal ion adsorption capacity of the sample. It was concluded that the AAm‐AMPS/clay nanocomposites could be used as novel type, fast‐responsive, and high capacity sorbent materials in heavy metal removing processes. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
Kuroda R  Yoshikuni N 《Talanta》1971,18(11):1123-1127
Many metals are not strongly adsorbed on DEAE-cellulose from aqueous hydrochloric acid media. However, some metals can be adsorbed on DEAE-cellulose from methanol-hydrochloric acid media. Distribution coefficients of Zn, Cd, Hg(II) and Bi(III), which show pronounced adsorption, are presented as functions of the methanol and the acid concentrations. Differences in the distribution coefficient between the four metals and a considerable number of other metals are large enough to permit good separations on columns. Among the platinum group metals, Pd(II), Ir(IV) and Pt(IV) are adsorbed from the mixed solvents and may be separated from large quantities of base metals such as Fe(III), Co(II), Ni and Cu(II).  相似文献   

14.
Ion flotation is a separation process involving the adsorption of a surfactant and counterions at an air/aqueous solution interface. It shows promise for removing toxic heavy metal ions from dilute aqueous solutions. Here we report the effect of a neutral chelating ligand, triethylenetetraamine (Trien), on the ion flotation of cations with dodecylsulfate, DS(-), introduced as sodium dodecylsulfate, SDS. Ion flotation in the aqueous SD-Cu(II)-Ca(II)-Trien system gave strongly preferential removal of Cu(II) over Ca(II), which is a reversal of the order of selectivity seen in the SDS-Cu(II)-Ca(II) system containing no Trien. The removal rates of Cu(2+) and Ni(2+) with DS(-) were much faster in the presence of Trien than for simple aquo ions, and the final metal concentration was significantly lower. Surface tension measurements showed that Trien enhanced the surface activity and adsorption density for SDS-Cu(II) and SDS-Ni(II) solutions. The overall change in the Gibbs free energy for adsorption resulting from complexation was -3.60 kJ/mol for Cu(II) and -3.50 kJ/mol for Ni(II). This included the effects of hydrophobic interactions between the metal-Trien complexes at the air/solution interface, along with changes in the amount of dehydration associated with cosorption of the metal-Trien complex with DS(-) at the air/solution interface.  相似文献   

15.
合成聚(丙烯酸)/聚(N 异丙基丙烯酰胺)互穿聚合物网络(PAAc/PNIPAIPN)水凝胶,具有温度及pH双重敏感特性.这种水凝胶在弱碱性条件下的溶胀率远大于酸性条件下的溶胀率.在酸性条件下,随着温度上升,凝胶的溶胀率也随之逐渐上升;而在弱碱性条件下,温度低于聚(N 异丙基丙烯酰胺)(PNIPA)的较低临界溶解温度(LCST)时,溶胀率也随着温度的上升而上升,当温度达到LCST时,凝胶的溶胀率突然急剧下降,并随着温度的逐渐上升而下降.  相似文献   

16.
Modified crosslinked polyacrylamides having different functional groups prepared by transamidation reaction in aqueous and non‐aqueous medium and by Hofmann reaction were used as chelating agents for removal of Cu(II), Cd(II) and Pb(II) ions from aqueous solutions at different pH values. Under non‐competitive conditions, polymers adsorbed different amounts of metal ions, depending on their functional groups and swelling abilities. The metal ion adsorption capacities of polymers changed between 0.11–1.71 mmol/g polymer. Under competitive conditions, while the polymers having mainly secondary amine groups were highly selective for Cu(II) ions (99.4%), those having mainly secondary amide and carboxylate groups have shown high selectivity towards Pb(II) ions (99.5%). The selectivity towards Cu(II) ion decreased and Pb(II) ion selectivity increased by the decrease of the pH of the solutions. The high initial adsorption rate (<10 min) suggests that the adsorption occurs mainly on the polymer surface. A regeneration procedure by treatment with dilute HCl solution showed that the modified polymers could be used several times without loss of their adsorption capacities.  相似文献   

17.
Abstract

In the present work, a novel composite consisting of magnetite, activated carbon from spent coffee grounds and natural clay (MACCC) was prepared by a one-pot synthesis method via a simultaneous activation and magnetization processes. Various techniques (XRD, FTIR, SEM, TEM, EDX, BET) were utilized to characterize the synthesized composite before utilizing it as an adsorbent for removal of Cu(II), Ni(II) and Pb(II) ions from aqueous solutions. Conditions for removal of heavy metals were thoroughly optimized as 25?°C, pH of 5.5, adsorbent dosage of 2?g L?1, and a contact time of 60?min. Three models of pseudo first-, second-order and intraparticle diffusion as well as three models of Langmuir, Freundlich, and Temkin were used to analyze kinetics and isotherms of the adsorption process. Thermodynamics was discussed completely. Regeneration and recyclability of the adsorbent were also evaluated. Based on the analysis of experimental results, a possible adsorption mechanism of heavy metals onto the synthesized composite was proposed. The maximum capacities caculated from Langmuir model followed the order of Pb(II) > Cu(II) > Ni(II) as 143.56, 96.16 and 84.86?mg·g?1, respectively. The overall results indicated that MACCC is a potential adsorbent for removal of toxic Pb(II), Cu(II) and Ni(II) ions from wastewater due to simple preparation, high removal efficiency and good recyclability.  相似文献   

18.
In this study, experimental measurements have been made on the batch adsorption of cadmium and lead ions from aqueous solutions using poly(guanidine modified 2‐acrylamido‐2‐methylpropan sulfonic acid/acrylic acid/N‐vinylpyrrolidone/2‐Hydroxyethyl methacrylate), P(AMPSG/AAc/NVP/HEMA) hydrogels. The guanidyl end group bearing AMPSG monomer was synthesized from the reaction of AMPS and guanidine. The hydrogels were prepared by UV‐curing technique. The morphology of the dry H10‐hydrogel sample was examined by SEM. The influence of the uptake conditions, such as pH, functional monomer per cent, contact time, initial feed concentration, and foreign metal ions on the metal ion binding capacity of hydrogel, was also tested. The selectivity of the hydrogel toward the different metal ions tested was Hg(II) > Pb(II) > Au(III) > Cd(II). The adsorption isotherm models were applied to the experimental data, and it was seen that the Langmuir isotherm model was the best fit for the adsorption of Cd(II) and Pb(II) ions on P(AMPSG/AAc/NVP/HEMA) hydrogel. It was found that adsorbed lead and cadmium ions on P(AMPSG/AAc/NVP/HEMA) hydrogel can be effectively desorbed by acid leaching and the regenerated P(AMPSG/AAc/NVP/HEMA) hydrogel can be reused almost five times less without any loss of adsorption capacity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
The effect of aspartic acid on the adsorption of Pb(II), Cu(II), Zn(II), Co(II), and Mn(II) on kaolinite at 25 degrees C in the presence of 5 mM KNO3 was investigated by means of potentiometric titrations and adsorption measurements over a range of pH and concentration. Data were modeled by extended constant capacitance models. Aspartic acid slightly enhanced the adsorption of Pb(II), Zn(II), and Co(II) at low pH, but inhibited the adsorption of all the metal ions at higher pH. Adsorption of Cu(II) and Co(II) was inhibited strongly. Because aspartic acid is adsorbed only weakly by kaolinite, inhibition of metal ion adsorption depends on the ability of aspartic acid to form complexes with the various metal ions together with the adsorption characteristics of these complexes. In particular suppression of adsorption at high pH arises from competition between surface sites and dissolved aspartate ions for the available metal ions. Cu(II) and Co(II) form complexes with aspartic acid more strongly than the other metals. As these complexes do not adsorb, Cu(II) and Co(II) suffer greater suppression from aspartic acid than the other metals. There was no evidence of adsorption of aspartic acid complexes to the permanently charged kaolinite faces.  相似文献   

20.
A series of granular pH-sensitive semi-interpenetrating polymer network (semi-IPN) hydrogels based on chitosan (CTS), acrylic acid (AA) and gelatine (GE) were utilized for the adsorption and recycle of Pb(II) from aqueous solutions. The composite hydrogels have been characterized by FT-IR and TGA. The effects of contact time, pH value and initial Pb(II) concentration on the adsorption were investigated. Results indicated that the adsorption capacity of the hydrogel increased with increasing pH value and initial Pb(II) concentration, and a pH-sensitive adsorption characteristic was presented. The adsorption rate of the semi-IPN hydrogels on Pb(II) is fast with an adsorption rate constant of 14.9790 mg/(g·s), and adsorption equilibrium could be reached within 10 min. The adsorption isotherms of the hydrogels for Pb(II) could be described well by the Langmuir equation, rather than the Freundlich equation. The as-prepared hydrogels showed good reusability with 0.05 mol/l HNO3 solutions as the desorbing agent and 0.1 mol/l NaOH solutions as the regeneration agent, respectively. After five consecutive adsorption-desorption processes, the semi-IPN hydrogel with 20 wt% GE may reach 85.26% of its initial adsorption capacity. In addition, the adsorbed Pb(II) can be quantitatively recovered by simply eluting the hydrogel with dilute HNO3 solution, and a recovery ratio of 89.27% was reached for the semi-IPN hydrogel. The satisfactory adsorption amount is mainly derived from the chelating of functional groups (i.e. –COO? and –NH2) with Pb(II) ions. The hydrogel adsorbents exhibited excellent affinity for Pb(II), and can be applied to treat wastewater containing heavy metal ion and simultaneously recover the valuable metal sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号