首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
考察了影响无水乙腈中超氧负离子基(O2^-)稳定性的因素,发现氧促使乙腈中O2^-浓度迅速减小,通过产物鉴定和UV动力学分析提出氧促O2^-与乙腈反应的可能机理。研究了O2^-与2,2,6,6-四甲基-4-羟基-N-溴哌啶(NB)的反应,表明NB可望成为非水溶剂中O2^-的专一捕获剂。  相似文献   

2.
We performed mechanistic studies of the reaction of PBN with the physiologically relevant glutathiyl radical, GS*, formed upon oxidation of the intracellular antioxidant, glutathione, GSH. The scavenging rate constant of GS* by PBN has been measured directly by laser flash photolysis and indirectly by competitive EPR of the spin adduct of PBN and another spin trap, DMPO (5,5-dimethyl-1-pyrroline N-oxide), and was found to be 6.7 x 107 M(-1) s(-1). Reverse decomposition of the paramagnetic PBN-glutathiyl radical adduct to the nitrone and thiyl radical was observed for the first time. The rate constant for the reaction of the monomolecular decomposition of the radical adduct was found to be 1.7 s(-1). Diamagnetic, EPR-invisible products of PBN adduct degradation were studied by 1H NMR and 19F NMR using newly synthesized fluorine-substituted PBN.  相似文献   

3.
Using a competitive spin trapping method, relative spin trapping rates were quantified for various short-lived radicals (methyl, ethyl, and phenyl radicals). High static pressure was applied to the competitive spin-trapping system by employing high-pressure electron spin resonance (ESR) equipment. Under high pressure (490 bar), spin trapping rate constants for alkyl and phenyl radicals increased by 10 to 40%, and the increase was dependent on the structure of nitrone spin traps. A maximum increase was obtained when tert-butyl(4-pyridinylmethylene)amine N-oxide (4-POBN) was used as a spin trap. Activation volumes (DeltaDeltaV(double dagger)) for the two spin trapping reactions were calculated to be -17-(-9) cm(3) mol(-1) for the 4-POBN system.  相似文献   

4.
In phosphate buffer solution the half-life of the PBN-superoxide spin adduct is very short. However, as a result of the formation of inclusion complexes, its ESR signal was easily detected for up to 25 min when the trapping of superoxide anion with PBN was carried out in the presence of different cyclodextrins. Furthermore, the formation of these inclusion complexes results in a significant protection of the PBN-superoxide adduct against l-ascorbate monoanion reduction.  相似文献   

5.
Extensive spectroscopic investigations have been carried out by recording the Fourier transform infrared (FTIR) and FT-Raman spectra and carrying out the theoretical quantum chemical studies on 4-morpholinecarboxaldehyde (4MC). From the ab initio and DFT analysis using HF, B3LYP and B3PW91 methods with 6-31G(d,p) and 6-311G++(d,p) basis sets the energies, structural, thermodynamical and vibrational characteristics of the compound were determined. The energy difference between the chair equatorial and chair axial conformers of 4MC have been calculated by density functional theory (DFT) method. The optimised geometrical parameters, theoretical wavenumbers and thermodynamic properties of the molecule were compared with the experimental values. The effect of carbonyl group on the characteristic frequencies of the morpholine ring has been analysed. The mixing of the fundamental modes with the help of potential energy distribution (PED) through normal co-ordinate analysis has been discussed.  相似文献   

6.
在血卟啉衍生物光敏体系中DMPO捕集自由基的ESR研究   总被引:2,自引:0,他引:2  
光照血卟啉衍生物(HPD)用于肿瘤的诊断和治疗已取得很大的成效,对此药理过程的分子机理的探索也开始引起生物和化学工作者的重视.我们的实验表明,在HPD光敏体系中自由基起着重要作用,特别是羟基自由基可能是HPD光致杀伤肿瘤细胞的主要原因.HPD光敏过程所产生的自由基的寿命极短,用化学方法或用一般ESR直接检测非常困难,但可被  相似文献   

7.
The [ε-PMo(V)(8)Mo(VI)(4)O(36)(OH)(4){Ln(III)(H(2)O)}(4)](5+) (Ln=La, Ce, Nd, Sm) polyoxocations, called εLn(4), have been synthesized at room temperature as chloride salts soluble in water, MeOH, EtOH, and DMF. Rare-earth metals can be exchanged, and (31)P NMR spectroscopic studies have allowed a comparison of the affinity of the reduced {ε-PMo(12)} core, thus showing that the La(III) ions have the highest affinity and that rare earths heavier than Eu(III) do not react with the ε-Keggin polyoxometalate. DFT calculations provide a deeper insight into the geometries of the systems studied, thereby giving more accurate information on those compounds that suffer from disorder in crystalline form. It has also been confirmed by the hypothetical La→Gd substitution reaction energy that Ln ions beyond Eu cannot compete with La in coordinating the surface of the ε-Keggin molybdate. Two of these clusters (Ln=La, Ce) have been tested to evidence that such systems are representative of a new efficient Lewis acid catalyst family. This is the first time that the catalytic activity of polyoxocations has been evaluated.  相似文献   

8.
Here we describe the synthesis and characterisation of a new isoindole-based nitrone spin trap, 1,1,3-trimethylisoindole N-oxide (TMINO). This nitrone and its radical adducts (isoindoline nitroxides) exhibit enhanced stability with respect to other commonly used spin traps and their adducts. We also report EPR trapping studies of this new nitrone with some carbon- and oxygen-centred radicals including alkyl, aryl, hydroxyl and benzoyloxyl systems. The narrow EPR line-widths and stability of the resulting nitroxide spin adducts allowed the detection of the expected radicals as well as secondary and minor radical components in the reaction mixtures.  相似文献   

9.
Radicals, such as acyl, hydrated acyl, alkyl and ketyl radicals, from aliphatic aldehyde photochemistry were detected by NO spin trapping and EPR techniques. Deuterium effects on EPR spectra and the generation of radicals by 2-amido-2-propyl radical attack on substrate molecules in aqueous solution via hydrogen-atom abstraction were applied to identify radicals produced photochemically from aldehydes. Aliphatic aldehydes used in the present investigation were formaldehyde, acetaldehyde, acetaldehyde-d4, propionaldehyde, isobutyraldehyde, isopentanal and tert-pentanal. Possible reaction mechanisms are suggested.  相似文献   

10.
Previous studies have shown that the enzyme-mediated generation of carbonate radical anion (CO(3)(.-)) may play an important role in the initiation of oxidative damage in cells. This study explored the thermodynamics of CO(3)(.-) addition to 5,5-dimethyl-1-pyrroline N-oxide (DMPO) using density functional theory at the B3LYP/6-31+G(**)//B3LYP/6-31G* and B3LYP/6-311+G* levels with the polarizable continuum model to simulate the effect of the bulk dielectric effect of water on the calculated energetics. Theoretical data reveal that the addition of CO(3)(.-) to DMPO yields an O-centered radical adduct (DMPO-OCO2) as governed by the spin (density) population on the CO(3)(.-). Electron paramagnetic resonance spin trapping with the commonly used spin trap, DMPO, has been employed in the detection of CO(3)(.-). UV photolysis of H(2)O(2) and DMPO in the presence of sodium carbonate (Na(2)CO(3)) or sodium bicarbonate (NaHCO(3)) gave two species (i.e., DMPO-OCO(2) and DMPO-OH) in which the former has hyperfine splitting constant values of a(N) = 14.32 G, a(beta)-Eta = 10.68 G, and a(gamma-H) = 1.37 G and with a shorter half-life compared to DMPO-OH. The origin of the DMPO-OH formed was experimentally confirmed using isotopically enriched H(2)(17)O(2) that indicates direct addition of HO(.) to DMPO. Theoretical studies on other possible pathways for the formation of DMPO-OH from DMPO-OCO(2) in aqueous solution and in the absence of free HO(.) such as in the case of enzymatically generated CO(3)(.-), show that the preferred pathway is via nucleophilc substitution of the carbonate moiety by H(2)O or HO(-). Nitrite formation has been observed as the end product of CO(3)(.-) trapping by DMPO and is partly dependent on the basicity of solution. The thermodynamic behavior of CO(3)(.-) in the aqueous phase is predicted to be similar to that of the hydroperoxyl (HO(2)(.)) radical.  相似文献   

11.
The carbon dioxide radical anion (CO2*-) is known to be generated in vivo through various chemical and biochemical pathways. Electron paramagnetic resonance (EPR) spin trapping with the commonly used spin trap, 5,5-dimethyl-1-pyrroline N-oxide (DMPO), has been employed in the detection of CO2*-. The thermodynamics of CO2*- addition to DMPO was predicted using density functional theory (DFT) at the B3LYP/6-31++G**//B3LYP/6-31G* and B3LYP/6-311+G* levels with the polarizable continuum model (PCM) to simulate the effect of the bulk dielectric effect of water on the calculated energetics. Three possible products of CO2*- addition to DMPO were predicted: (1) a carboxylate adduct, (2) pyrroline-alcohol and (3) DMPO-OH. Experimentally, UV photolysis of H2O2 in the presence of sodium formate (NaHCO2) and DMPO gave an EPR spectrum characteristic of a C-centered carboxylate adduct and is consistent with the theoretically derived hyperfine coupling constants (hfcc). The pKa of the carboxylate adduct was estimated computationally to be 6.4. The mode of CO2*- addition to DMPO is predicted to be governed predominantly by the spin (density) population on the radical, whereas electrostatic effects are not the dominant factor for the formation of the persistent adduct. The thermodynamic behavior of CO2*- in the aqueous phase is predicted to be similar to that of mercapto radical (*SH), indicating that formation of CO2*- in biological systems may have an important role in the initiation of oxidative damage in cells.  相似文献   

12.
The kinetic data obtained for the cycloadditions of the permanganate ion to a series of styrene derivatives in dichloromethane solution in the presence of a quaternary ammonium ion were examined with two theoretical approaches, on the assumption that the reactions proceed via a concerted [3 + 2] mechanism. The semi-quantitative frontier molecular orbital analysis of the kinetic data shows a linear free energy relationship with better correlation than the Hammett plot with a values when the point for p-NO2 group is omitted. Further examination of the results of the FMO analysis reveals that the deviation of the point for p-nitrostyrene is attributed to the transition structure being more reactant-like than that of the other derivatives. The plot of log k2 vs. -deltaG++ calculated by the density functional theory (Becke3LYP) follows a straight line with the desired correlation for all the substituents. A marked tendency was observed for the MO calculations to underestimate the deltaG++ value for electron-withdrawing substituents when the calculation was carried out excluding the quaternary ammonium ion. This inconsistency was much improved by the calculations incorporating the quaternary ammonium ion. The actual values of deltaG++ obtained from the Eyring analysis are in good agreement with those calculated at the B3LYP/6-311 +G(d,p)//B3LYP/ LanL2DZ level.  相似文献   

13.
The photolysis wavelength dependence of the nitrate radical quantum yield for peroxyacetyl nitrate (CH(3)C(O)OONO(2), PAN) is investigated. The wavelength range used in this work is between 289 and 312 nm, which mimics the overlap of the solar flux available in the atmosphere and PAN's absorption cross section. We find the nitrate radical quantum yield from PAN photolysis to be essentially invariant; Phi(NO3)(PAN) = 0.30 +/- 0.07 (+/-2sigma) in this region. The excited states involved in PAN photolysis are also investigated using ab initio calculations. In addition to PAN, calculations on peroxy nitric acid (HOONO(2), PNA) are performed to examine general photochemical properties of the -OONO(2) chromophore. Equation of motion coupled cluster calculations (EOM-CCSD) are used to examine excited state energy gradients for the internal coordinates, oscillator strengths, and transition energies for the n --> pi* transitions responsible for the photolysis of both PNA and PAN. We find in both molecules, photodissociation of both O-O and O-N bonds occurs via excitation to predissociative electronic excited states and subsequent redistribution of that energy as opposed to directly dissociative excitations. Comparison and contrast between experimental and theoretical studies of HOONO(2) and PAN photochemistry from this and other work provide unique insight on the photochemistry of these species in the atmosphere.  相似文献   

14.
The effect of a remote substituent on regioselectivity in the oxymercuration of 2-substituted norbornenes has been investigated experimentally and theoretically using density functional theory (DFT). Regioselectivities of 1:1 to 14:1 were observed with various 2-substituted norbornenes. Exo-2-substituted norbornenes always gave greater regioselectivities compared to the corresponding endo-2-substituted norbornenes. The effects of solvents on the regioselectivity have also been examined, and ethereal solvents were found to be the best choice giving the optimal yield and regioselectivity. The relative rate of oxymercuration was estimated by competition experiments. The least reactive substrate (X = OAc) gave the highest regioselectivity. According to DFT predictions, the increased difference between the reaction barriers that results in the greater regioselectivity is correlated directly with the larger polarity of the C=C double bond, which is attacked by the mercury and oxygen. A number of stable exo and endo conformers were predicted. All exo conformers show the same polarity of the double bond, while some endo conformers have a reversal of this polarity. All the conformers except those with the OAc substituent are very close in energy and thus should react. The existence of a mixture of endo conformers with the C=C double bond of opposite polarity clearly explains a decrease in regioselectivity for the endo species. The origin of the greatest regioselectivity for the OAc-2-norbornenes lies in the fact that the conformer with the largest polarity is notably lower in energy than others due to an internal C-H-O hydrogen bond.  相似文献   

15.
The nitrone 5-carbamoyl-5-methyl-1-pyrroline N-oxide (AMPO) was synthesized and characterized. Spin trapping of various radicals by AMPO was demonstrated for the first time by electron paramagnetic resonance (EPR) spectroscopy. The resulting spin adducts for each of these radicals gave unique spectral profiles. The hyperfine splitting constants for the superoxide adduct are as follows: isomer I (80%), a(nitronyl)(-)(N) = 13.0 G and a(beta)(-)(H) = 10.8 G; isomer II (20%), a(nitronyl)(-)(N) = 13.1 G, a(beta)(-)(H) = 12.5 G, and a(gamma)(-)(H) = 1.75 G. The half-life of the AMPO-O(2)H was about 8 min, similar to that observed for EMPO but significantly shorter than that of the DEPMPO-O(2)H with t(1/2) approximately 16 min. However, the spectral profile of AMPO-O(2)H at high S/N ratio is distinguishable from the spectrum of the (*)OH adduct. Theoretical analyses using density functional theory calculations at the B3LYP/6-31+G//B3LYP/6-31G level were performed on AMPO and its corresponding superoxide adduct. Calculations predicted the presence of intramolecular H-bonding in both AMPO and its superoxide adduct. The H-bonding interaction was further confirmed by an X-ray structure of AMPO, and of the novel and analogous amido nitrone 2-amino-5-carbamoyl-5-methyl-1-pyrroline N-oxide (NH(2)-AMPO). The thermodynamic quantities for superoxide radical trapping by various nitrones have been found to predict favorable formation of certain isomers. The measured partition coefficient in an n-octanol/buffer system of AMPO was similar to those of DMPO and DEPMPO. This study demonstrates the suitability of the AMPO nitrone for use as a spin trap to study radical production in aqueous systems.  相似文献   

16.
A new kinetic approach to the evaluation of rate constants for the spin trapping of superoxide/hydroperoxyl radical by nitrones in buffered media is described. This method is based on a competition between the superoxide trapping by the nitrone and the spontaneous dismutation of this radical in aqueous media. EPR spectra are recorded as a function of time at various nitrone concentrations, and kinetic curves are obtained after treatment of these spectra using both singular value decomposition and pseudo-inverse deconvolution methods. Modelling these curves permits the determination of the rate constants k(T) and k(D) for the superoxide trapping and the adduct decay reactions, respectively. Kinetics parameters thus obtained with six nitrones, namely the 2-ethoxycarbonyl-2-methyl-3,4-dihydro-2H-pyrrole N-oxide (EMPO), the 5-diethoxyphosphoryl-5-methyl-3,4-dihydro-5H-pyrrole N-oxide (DEPMPO), the 5,5-dimethyl-3,4-dihydro-5H-pyrrole N-oxide (DMPO), the 1,3,5-tri[(N-(1-diethylphosphono)-1-methylethyl)-N-oxy-aldimine]benzene (TN), the N-benzylidene-1-ethoxycarbonyl-1-methylethylamine N-oxide (EPPN), and the N-[(1-oxidopyridin-1-ium-4-yl)methylidene]-1-ethoxycarbonyl-1-methylethylamine N-oxide (EPPyON), indicate that cyclic nitrones trapped superoxide faster than the linear ones. However, the low k(T) values obtained for compounds show that there is still a need for new molecules with better spin trapping capacities.  相似文献   

17.
Experimental studies have been conducted to determine the rate coefficient and mechanism of the reaction between methylglyoxal (CH(3)COCHO, MGLY) and the OH radical over a wide range of temperatures (233-500 K) and pressures (5-300 Torr). The rate coefficient is pressure independent with the following temperature dependence: k(3)(T) = (1.83 +/- 0.48) x 10(-12) exp((560 +/- 70)/T) cm(3) molecule(-1) s(-1) (95% uncertainties). Addition of O(2) to the system leads to recycling of OH. The mechanism was investigated by varying the experimental conditions ([O(2)], [MGLY], temperature and pressure), and by modelling based on a G3X potential energy surface, rovibrational prior distribution calculations and master equation RRKM calculations. The mechanism can be described as follows: Addition of oxygen to the system shows that process (4) is fast and that CH(3)COCO completely dissociates. The acetyl radical formed from reaction (4) reacts with oxygen to regenerate OH radicals (5a). However, a significant fraction of acetyl radical formed by reaction (R4) is sufficiently energised to dissociate further to CH(3) + CO (R4b). Little or no pressure quenching of reaction (R4b) was observed. The rate coefficient for OD + MGLY was measured as k(9)(T) = (9.4 +/- 2.4) x 10(-13) exp((780 +/- 70)/T) cm(3) molecule(-1) s(-1) over the temperature range 233-500 K. The reaction shows a noticeable inverse (k(H)/k(D) < 1) kinetic isotope effect below room temperature and a slight normal kinetic isotope effect (k(H)/k(D) > 1) at high temperature. The potential atmospheric implications of this work are discussed.  相似文献   

18.
Certain lines in the ESR spectrum of X-irradiated Ph3P·BCl3 are attributed to Ph3PCl and this radical is shown to have local C3v symmetry with the unpaired electron in a P-Cl σ* orbital.  相似文献   

19.
2-(4-fluorophenyl)-1-(4-methoxyphenyl)-4,5-dimethyl-1H-imidazole (fpmpdi) was synthesised and its structure was characterized by 1H, 13C, mass, elemental analysis and X-ray techniques. It belongs to monoclinic crystal system having the lattice dimensions of monoclinic with point group, P21/c; a=8.5132 (1) ?, b=9.5128 (2) ?, c=19.2610 (3) ?, β=96.798 (2). Since (fpmpdi) is highly sensitive to different external stimulations such as UV irradiation, heat, increasing pressure and changing the environmental pH causing color change and so they can be used as a "multi-way" optically switchable material. A prominent fluorescence enhancement was found in the presence of transition metal ions such as Hg2+, Pb2+ and Cu2+ and this was suggested to result from the suppression of radiationless transitions from the n-π* state in the chemosensors. The optimized geometrical parameters obtained by DFT calculation is in good agreement with single crystal XRD data. The Mulliken, NBO charge analysis and the HOMO-LUMO energies were also calculated. The molecular electrostatic potential surface (MEP) and first static hyperpolarisability have also been employed theoretically which reveal that the fpmpdi have non-linear optical (NLO) behavior with non-zero values. Ground and excited states DFT calculations were carried out in order to find out dipole moment and energy.  相似文献   

20.
We investigated electron transfer between a tyrosyl radical and cysteine residue in two systems, oxyhemoglobin (oxyHb)/peroxynitrite/5,5-dimethyl-1-pyrroline N-oxide (DMPO) and myoglobin (Mb)/hydrogen peroxide/DMPO, using a combination of techniques including ESR, immuno-spin trapping (IST), and ESI/MS. These techniques show that the nitrone spin trap DMPO covalently binds to one or more amino acid radicals in the protein. Treating oxyHb with peroxynitrite and Mb with H2O2 in the presence of a low DMPO concentration yielded secondary Cys-DMPO radical adduct exclusively, whereas in the presence of high DMPO, more of the primary Tyr-DMPO radical adduct was detected. In both systems studied, we found that, at high DMPO concentrations, mainly tyrosyl radicals (Hb-Tyr42/Tyr24 and Mb-Tyr103) are trapped and the secondary electron-transfer reaction does not compete, whereas in the presence of low concentrations of DMPO, the secondary reaction predominates over tyrosyl trapping, and a thiyl radical is formed and then trapped (Hb-Cys93 or Mb-Cys110). With increasing concentrations of DMPO in the reaction medium, primary radicals have an increasing probability of being trapped. MS/MS was used to identify the specific Tyr and Cys residues forming radicals in the myoglobin system. All data obtained from this combination of approaches support the conclusion that the initial site of radical formation is a Tyr, which then abstracts an electron from a cysteine residue to produce a cysteinyl radical. This complex phenomenon of electron transfer from one radical to another has been investigated in proteins by IST, ESR, and MS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号