首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The accurate ground‐state potential energy surface of hydrogen peroxide, H2O2, has been determined from ab initio calculations using the coupled‐cluster approach in conjunction with the correlation‐consistent basis sets up to septuple‐zeta quality. Results obtained with the conventional and explicitly correlated coupled‐cluster methods were compared. The core–electron correlation, scalar relativistic, and higher‐order valence–electron correlation effects were taken into account. The adiabatic effects were also discussed. The vibration–rotation energy levels of the H2O2, D2O2, and HOOD isotopologues were predicted, and the experimental vibrational fundamental wavenumbers were reproduced to 1 cm?1 (“spectroscopic”) accuracy. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
The accurate ground‐state potential energy surface of silicon dicarbide, SiC2, has been determined from ab initio calculations using the coupled‐cluster approach. Results obtained with the conventional and explicitly correlated coupled‐cluster methods were compared. The core‐electron correlation, higher‐order valence‐electron correlation, and scalar relativistic effects were taken into account. The potential energy barrier to the linear SiCC configuration was predicted to be 1782 cm?1. The vibration‐rotation energy levels of the SiC2, 29SiC2, 30SiC2, and SiC13C isotopologues were calculated using a variational method. The experimental vibration‐rotation energy levels of the main isotopologue were reproduced to high accuracy. In particular, the experimental energy levels of the highly anharmonic vibrational ν3 mode of SiC2 were reproduced to within 6.7 cm?1, up to as high as the v3 = 16 state.  相似文献   

3.
Ab initio electronic structure methods have reached a satisfactory accuracy for the calculation of static properties, but remain too expensive for quantum dynamical calculations. Recently, an efficient semiclassical method was proposed to evaluate the accuracy of quantum dynamics on an approximate potential without having to perform the expensive quantum dynamics on the accurate potential. Here, this method is applied for the first time to evaluate the accuracy of quantum dynamics on an approximate analytical or interpolated potential in comparison to the quantum dynamics on an accurate potential obtained by an ab initio electronic structure method. Specifically, the vibrational dynamics of H2 on a Morse potential is compared with that on the full CI potential, and the photodissociation dynamics of CO2 on a LEPS potential with that on the excited 1Π surface computed at the EOM‐CCSD/aug‐cc‐pVDZ level of theory. Finally, the effect of discretization of a potential energy surface on the quantum dynamics is evaluated. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem 110:2426–2435, 2010  相似文献   

4.
The potential energy surface for the reaction involving NH2 plus NO was explored with a quadratic complete basis set ab initio approach and three hybrid density functional theory methods, the target being to accurately estimate activation barriers and the relative stability of the nitrogen–oxygen isomers. The computational results were compared with previously performed ab initio calculations and new, more accredited values for the NH2NO rearrangement to HNNOH and for the HNNOH decomposition reaction were suggested. © 1998 John Wiley & Sons, Inc. Int J Quant Chem 66 : 409–414, 1998  相似文献   

5.
The generalized Brillouin theorem is used to construct an optimization procedure for MCSCF functions by iterative contracted CI calculations. Special attention is paid to the MO transformation step in each iteration. In this method the MCSCF calculation may easily be augmented by a restricted CI calculation involving a configuration set which is uniquely determined by the trial function. An application to the calculation of the potential energy surface for linear LiH2 in the reaction LiH + HLi + H2 leads to the conclusion that this restricted CI is necessary, in order to obtain satisfactory results for the potential energy barrier in this reaction.  相似文献   

6.
An accurate potential energy surface of sulfur dioxide, SO2, in its ground electronic state has been determined from ab initio calculations using the coupled‐cluster approach in conjunction with the correlation‐consistent basis sets up to septuple‐zeta quality. The results obtained with the conventional and explicitly correlated coupled‐cluster methods are compared. The role of the core–electron correlation, higher‐order valence–electron correlation, scalar relativistic, and adiabatic effects in determining the structure and dynamics of the SO2 molecule is discussed. The vibration‐rotation energy levels of the 32SO2 and 34SO2 isotopologues were predicted using a variational approach. It was shown that the inclusion of the aforementioned effects was mandatory to attain the “spectroscopic” accuracy. © 2017 Wiley Periodicals, Inc.  相似文献   

7.
An approximate analytical solution of the Schrödinger equation is obtained to represent the rotational–vibrational (ro-vibrating) motion of a diatomic molecule. The ro-vibrating energy states arise from a systematical solution of the Schrödinger equation for an empirical potential (EP) V ±(r) = D e {1 ? (?/δ)[coth (ηr)]±1/1 ? (?/δ)}2 are determined by means of a mathematical method so-called the Nikiforov–Uvarov (NU). The effect of the potential parameters on the ro-vibrating energy states is discussed in several values of the vibrational and rotational quantum numbers. Moreover, the validity of the method is tested with previous models called the semiclassical (SC) procedure and the quantum mechanical (QM) method. The obtained results are applied to the molecules H2 and Ar2.  相似文献   

8.
An analytic potential energy function is proposed and applied to evaluate the amide–amide and amide–water hydrogen‐bonding interaction energies in peptides. The parameters in the analytic function are derived from fitting to the potential energy curves of 10 hydrogen‐bonded training dimers. The analytic potential energy function is then employed to calculate the N? H…O?C, C? H…O?C, N? H…OH2, and C?O…HOH hydrogen‐bonding interaction energies in amide–amide and amide–water dimers containing N‐methylacetamide, acetamide, glycine dipeptide, alanine dipeptide, N‐methylformamide, N‐methylpropanamide, N‐ethylacetamide and/or water molecules. The potential energy curves of these systems are therefore obtained, including the equilibrium hydrogen bond distances R(O…H) and the hydrogen‐bonding energies. The function is also applied to calculate the binding energies in models of β‐sheets. The calculation results show that the potential energy curves obtained from the analytic function are in good agreement with those obtained from MP2/6‐31+G** calculations by including the BSSE correction, which demonstrate that the analytic function proposed in this work can be used to predict the hydrogen‐bonding interaction energies in peptides quickly and accurately. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2009  相似文献   

9.
The local density approximation (LDA) to the exchange potential Vx( r ), namely the ρ1/3 electron gas form, was already transcended in Slater's 1951 paper. Here, using Dirac's 1930 form for the exchange energy density ? x( r ), the Slater (Sl) nonlocal exchange potential V( r ) is defined by 2? x( r )/ρ( r ). In spherical atomic ions, say the Be or Ne‐like series, this form V( r ) already has the correct behavior in both r → 0 and r → ∞ limits when known properties of the exchange energy density ? x( r ) and the ground‐state electron density ρ( r ) are invoked. As examples, some emphasis will first be given to the use of the so‐called 1/Z expansion in such spherical atomic ions, for which analytic results can be obtained for both ? x( r ) and ρ( r ) as the atomic number Z becomes large. The usefulness of the 1/Z expansion is directly demonstrated for the U atomic ion with 18 electrons by comparison with the optimized effective potential prediction. A rather general integral equation for the exchange potential is then proposed. Finally, without appeal to large Z, two‐level systems are considered, with specific reference to the Be atom and to the LiH molecule. In all cases treated, the Slater potential V( r ) is a valuable starting point, even though it needs appreciable quantitative corrections reflecting directly atomic shell structure. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

10.
A new four‐dimensional intermolecular potential energy surface for CS2 dimer is obtained by ab initio calculation of the interaction energies for a range of configurations and center‐of‐mass separation distances for the first time. The calculations were performed using the supermolecular approach at the Møller–Plesset second‐order perturbation (MP2) level of theory with the augmented correlation consistent basis sets (aug‐cc‐pVxZ, x = D, T) and corrected for the basis‐set superposition error using the full counterpoise correction method. A two‐point extrapolation method was used to extrapolate the calculated energy points to the complete basis set limit. The effect of using the higher levels of theory, quadratic configuration interaction containing single, double, and perturbative triple excitations QCISD(T) and coupled cluster singles, doubles and perturbative triples excitations CCSD(T), on the shape of potential energy surface was investigated. It is shown that the MP2 level of theory apparently performs extremely poorly for describing the intermolecular potential energy surface, overestimating the total energy by a factor of nearly 1.73 in comparison with the QCISD(T) and CCSD(T) values. The value of isotropic dipole–dipole dispersion coefficient (C6) of CS2 fluid was obtained from the extrapolated MP2 potential energy surface. The MP2 extrapolated energy points were fitted to well‐known analytical potential functions using two different methods to represent the potential energy surface analytically. The most stable configuration of the dimer was determined at R = 6.23 au, α = 90°, β = 90°, and γ = 90°, with a well depth of 3.980 kcal mol?1 at the MP2 level of theory. Finally, the calculated second virial coefficients were compared with experimental values to test the quality of the presented potential energy surface. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2011.  相似文献   

11.
Electronic structure and spectroscopic properties for the ground electronic states of CH, SiH, GeH and SnH molecules were obtained using the multiconfigurational self-consistent field followed by spin–orbit multireference multistate perturbation theory. Spin–orbit splitting calculations for ground states of the four molecules were carried out with model core potential (MCP) and all-electron (AE) methods. MCP results are compared with corresponding AE values to estimate the accuracy of the saving cost MCP calculations. The potential energy curves, calculated for the Ω states CH(X12Π1/2 and X22Π3/2), SiH(X12Π1/2 and X22Π3/2), GeH(X12Π1/2 and X22Π3/2) and SnH(X12Π1/2 and X22Π3/2) using the MCP method, were fitted to analytical potential energy function using Murrell–Sorbie potential energy function. Based on the analytical potential energy function, force constants and spectroscopic constants for the Ω states were obtained.  相似文献   

12.
We present bound state spectra of the 3D rational potential, V(r) = r2 + λr2/(1 + gr2), g > 0, by means of the generalized pseudospectral method. All the 30 states corresponding to n = 0–9 are considered for the first time for a broad range of coupling parameters. These results surpass the accuracy of all other existing calculations published so far except the finite‐difference method, which yields similar accuracy as ours. Variation of energies and radial distribution functions is followed with respect to the interaction parameters. Special emphasis has been laid on higher excitations and negative values of the interaction, where relatively less work has been reported. The energy sequence is found to be different for positive and negative interaction; numerically following a mirror‐image relationship usually, if not always. Additionally, 20 energy splittings arising from certain levels belonging to n = 0–9 are systematically studied as functions of the potential parameters. Several new states (including the higher ones) are presented. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

13.
In the present article, the Tang–Toennies–Yiu (TTY) potential model is modified by introducing one adjustable parameter. Then, the van der Waals potentials of He2, Ne2, Ar2, Kr2, and Xe2 are calculated by this model with the adjustable parameter being determined by the well determined well depth De of these systems. Based on the derived potentials, the vibrational energy spacings of these systems are also calculated. It is shown that the present derived potentials and vibrational energy spacings agree well with experiment and other theoretical calculations. Finally, the normalization constant A in the asymptotic wave function of rare-gas atoms is estimated. The present derived normalization constant A is very close to the one by calculating the ratio between the Hartree–Fock function and the asymptotic wave function. The results confirm that absorbing the first-order polarization energy into the exchange energy expression is a well approximation for the present systems.  相似文献   

14.
The potential curve, dissociation energy, equilibrium internuclear distance, and spectroscopic constants for the ground state of the Ca2 molecule are calculated with the help of the generalized relativistic effective core potential method, which allows one to exclude the inner core electrons from the calculations and to take the relativistic effects into account effectively. Extensive generalized correlation basis sets were constructed and used. The scalar relativistic coupled cluster method with corrections for high‐order cluster amplitudes is used for the correlation treatment. The results are analyzed and compared with the experimental data and corresponding all‐electron results. © 2013 Wiley Periodicals, Inc.  相似文献   

15.
Summary The solution of the Schrödinger equation for diatomic molecules when the finite element method is used gives the possibility to evaluate highly accurate basis-independent potential energy curves. In this work such types of numerically accurate potential energy curves on the HF level have been evaluated for Li2, Na2 and K2 and could be used as benchmarks in the optimization of basis sets. A comparison between recent LCAO HF calculations in which extended basis sets are used and the accurate values determined in this work show that there is a difference in total energy of 4×10–5 and 10–3 a.u. for Li, Li2, and Na, Na2, respectively. Evaluated dissociation energies are, however, due to the cancellation of numerical errors in much better agreement. Further, it is found that different exchange correlation potentials for the heavier molecules such as those given by von Barth-Hedin and Vosko, Wilk and Nusair reproduce experimental properties such as dissociation energies, vibrational frequencies almost as well as those achieved with advanced CI methods. TheX potential gives accurate bond lengths for Na2 and K2, whereas the dissociation energies are too small.  相似文献   

16.
We present newab initio calculations of the interaction potential and the elastic and inelastic cross sections for He scattering by I2. The electronic structure calculations of the interaction potential are based on an extensive one-electron basis set (triple zeta plus ad set on each I, ans function plus ap set at the I2 bond center, and quadruple zeta plus twop sets on He), a two-configuration-SCF orbital set, and a configuration interaction calculation based on all single and double excitations out of the two-configuration reference space. The calculations are performed at 16He-I2 distances for nine combinations of I2 vibrational displacement and orientation. A new form of analytic representation is presented that is particularly well suited to efficient and accurate fitting ofab initio interaction potentials that include vibrational displacements. Scattering calculations are performed by the vibrational close-coupling, rotational-infinite-order-sudden approximation with a converged vibrational basis.  相似文献   

17.
The potential energy curves for the X1∑ g, B1△g and B′1∑ g states of C2 have been studied by using MRCI and approximate CI methods, and are benchmarked against the calculations of full configuration interaction (FCI). The results obtained by MRCI method agree with the FCI very well, and even are accurate enough to compare other approximate methods as benchmark, when the calculations of FCI are not feasible. The approximate CI methods mentioned in this paper are reliable for treating chemical problems.  相似文献   

18.
The potential energy surface of O(1D) + CH3CH2Br reaction has been studied using QCISD(T)/6‐311++G(d,p)//MP2/6‐311G(d,p) method. The calculations reveal an insertion‐elimination reaction mechanism of the title reaction. The insertion process has two possibilities: one is the O(1D) inserting into C? Br bond of CH3CH2Br producing one energy‐rich intermediate CH3CH2OBr and another is the O(1D) inserting into one of the C? H bonds of CH3CH2Br producing two energy‐rich intermediates, IM1 and IM2. The three intermediates subsequently decompose to various products. The calculations of the branching ratios of various products formed though the three intermediates have been carried out using RRKM theory at the collision energies of 0, 5, 10, 15, 20, 25, and 30 kcal/mol. CH3CH2O + Br are the main decomposition products of CH3CH2OBr. CH3COH + HBr and CH2CHOH + HBr are the main decomposition products for IM1; CH2CHOH + HBr are the main decomposition products for IM2. As IM1 is more stable and more likely to form than CH3CH2OBr and IM2, CH3COH + HBr and CH2CHOH + HBr are probably the main products of the O(1D) + CH3CH2Br reaction. Our computational results can give insight into reaction mechanism and provide probable explanations for future experiments. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

19.
The accurate ground‐state potential energy surface of germanium dicarbide, GeC2, has been determined from ab initio calculations using the coupled‐cluster approach. The core–electron correlation, higher‐order valence‐electron correlation, and scalar relativistic effects were taken into account. The potential energy surface of GeC2 was shown to be extraordinarily flat near the T‐shaped equilibrium configuration. The potential energy barrier to the linear CCGe configuration was predicted to be 1218 cm−1. The vibration–rotation energy levels of some GeC2 isotopologues were calculated using a variational method. The vibrational bending mode ν3 was found to be highly anharmonic, with the fundamental wavenumber being only 58 cm−1. Vibrational progressions due to this mode were predicted for the , , and states of GeC2. © 2018 Wiley Periodicals, Inc.  相似文献   

20.
An approximate expression for the eigenvalues for van der Waals molecules by use of the Lennard-Jones (12-6) potential in the WKB approximation is presented. The expression is applied to the rare gas molecules. Ar2, Kr2, and Xe2 by fitting the potential function to the observed potential parameters. Calculated results of vibrational energy spacings for these molecules agree well with the experiment and other calculations which are based on numerical integration of the Schrödinger equation. For Xe2, the energy spacing expression is used to determine the thermodynamic functions of the van der Waals bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号