首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mechanistic studies of a palladium-mediated decarboxylative olefination of arene carboxylic acids are presented, providing spectroscopic and, in two instances, crystallographic evidence for intermediates in a proposed stepwise process. Sequentially, the proposed pathway involves carboxyl exchange between palladium(II) bis(trifluoroacetate) and an arene carboxylic acid substrate, rate-determining decarboxylation to form an arylpalladium(II) trifluoroacetate intermediate (containing two trans-disposed S-bound dimethyl sulfoxide ligands in a crystallographically characterized form), then olefin insertion and beta-hydride elimination. Because of the unique mode of generation of the arylpalladium(II) trifluoroacetate intermediate, a species believed to be substantially electron-deficient relative to phosphine-containing arylpalladium(II) complexes previously studied, it has been possible to gain new insights into those steps that are common to the Heck reaction, namely, olefin insertion and beta-hydride elimination. The present results show that there are notable differences in reactivity between arylpalladium(II) intermediates generated by decarboxylative palladation and those produced in conventional Heck reactions. Specifically, we have found that more electron-rich alkenes react preferentially with an arylpalladium(II) trifluoroacetate intermediate formed by decarboxylative palladation, whereas an opposite trend is found in conventional Heck reactions. In addition, we have found that the aralkylpalladium(II) trifluoroacetate intermediates that are formed upon olefin insertion in the present study are stabilized with respect to beta-hydride elimination as compared to the corresponding phosphine-ligated aralkylpalladium(II) complexes. We have also crystallographically characterized an aralkylpalladium(II) trifluoroacetate intermediate derived from arylpalladium(II) insertion into norbornene, and this structure, too, contains an S-bound dimethyl sulfoxide ligand; the ipso-carbon of the transferred aryl group and trifluoroacetate function as the third and fourth ligands in the observed distorted square-planar palladium(II) complex.  相似文献   

2.
[reaction: see text] A palladium-catalyzed decarboxylative arylation reaction was shown to produce Heck-type coupling products using a number of different arene carboxylic acid and 2-cycloalken-1-one substrates. The more conventional Heck coupling of an aryl iodide and a 2-cycloalken-1-one reactant was also briefly explored for comparison, where it was found that phosphine-free (Jeffery) conditions afforded the highest yield of product.  相似文献   

3.
A palladium‐catalyzed method for the decarboxylative ortho C?H acylation of N‐sulfoximine benzamides is developed at room temperature. The catalytic method enables easy access to various functionalized 2‐aroylaromatic carboxylic acid derivatives in good isolated yields. Based on our mechanistic studies, a Pd(II)/Pd(IV) catalytic cycle that involves aroyl radical intermediate is proposed for the reaction.  相似文献   

4.
A systematic theoretical study is carried out on the mechanism for Pd(II)-catalyzed oxidative cross-coupling between electron-deficient arenes and alkenes. Two types of reaction pathways involving either a sequence of initial arene C-H activation followed by alkene activation, or the reverse sequence of initial alkene C-H activation followed by arene activation are evaluated. Several types of C-H activation mechanisms are discussed including oxidative addition, σ-bond metathesis, concerted metalation/deprotonation, and Heck-type alkene insertion. It is proposed that the most favored reaction pathway should involve an initial concerted metalation/deprotonation step for arene C-H activation by (L)Pd(OAc)(2) (L denotes pyridine type ancillary ligand) to generate a (L)(HOAc)Pd(II)-aryl intermediate, followed by substitution of the ancillary pyridine ligand by alkene substrate and direct insertion of alkene double bond into Pd(II)-aryl bond. The rate- and regio-determining step of the catalytic cycle is concerted metalation/deprotonation of arene C-H bond featuring a six-membered ring transition state. Other mechanism alternatives possess much higher activation barriers, and thus are kinetically less competitive. Possible competing homocoupling pathways have also been shown to be kinetically unfavorable. On the basis of the proposed reaction pathway, the regioselectivity predicted for a number of monosubstituted benzenes is in excellent agreement with experimental observations, thus, lending further support for our proposed mechanism. Additionally, the origins of the regioselectivity of C-H bond activation is elucidated to be caused by a major steric repulsion effect of the ancillary pyridine type ligand with ligands on palladium center and a minor electronic effect of the preinstalled substituent on the benzene ring on the cleaving C-H bond. This would finally lead to the formation of a mixture of meta and para C-H activation products with meta products dominating while no ortho products were detected. Finally, the multiple roles of the ancillary pyridine type ligand have been discussed. These insights are valuable for our understanding and further development of more efficient and selective transition metal-catalyzed oxidative C-H/C-H coupling reactions.  相似文献   

5.
H Wang  LN Guo  XH Duan 《Organic letters》2012,14(17):4358-4361
An efficient catalytic decarboxylative acylation of unactivated sp(2) (alkenyl) C-H bonds has been developed. Various substituted α-oxocarboxylic acids with different electronic properties react under mild conditions to afford a diverse range of β-acyl enamide products in good yields. The reaction is proposed to proceed via a cyclic vinylpalladium intermediate, facilitating the decarboxylative dehydrogenative process with enamide coupling partners.  相似文献   

6.
A palladium-assisted coupling reaction of aryl triflate with arene was investigated, and a novel Pd reagent prepared from equimolar Pd(OAc)2, 1,3-Bis[diphenylphosphino]propane (DPPP), and Bu3P was developed. This method is useful for intramolecular biaryl coupling reactions, not only between aryl triflate and arene (triflate-amide), but also between aryl halide and arene (halo-amide).  相似文献   

7.
Indanones and 2-cyclopentenones have been successfully prepared in good to excellent yields by the palladium-catalyzed carbonylative cyclization of unsaturated aryl iodides and dienyl triflates, iodides, and bromides, respectively. The best results are obtained by employing 10 mol % of Pd(OAc)(2), 2 equiv of pyridine, 1 equiv of n-Bu(4)NCl, 1 atm of CO, a reaction temperature of 100 degrees C, and DMF as the solvent. This carbonylative cyclization is particularly effective on substrates that contain a terminal olefin. The proposed mechanism for this annulation includes (1) Pd(OAc)(2) reduction to the active palladium(0) catalyst, (2) oxidative addition of the organic halide or triflate to Pd(0), (3) coordination and insertion of carbon monoxide to produce an acylpalladium intermediate, (4) acylpalladation of the neighboring carbon-carbon double bond, (5) reversible palladium beta-hydride elimination and re-addition to form a palladium enolate, and (6) protonation by H(2)O to produce the indanone or 2-cyclopentenone.  相似文献   

8.
Palladium-catalyzed decarboxylative alkynylation of α-acyloxyketones triggered by C(sp3)−O bond cleavage is disclosed. The decarboxylation strategy featuring a neutral reaction condition enabled an unprecedent catalytic alkynylation of a ketone enolate. The reaction was applied to a variety of substrates, giving desired products in good yields. We successfully obtained X-ray crystallography of a new palladium–enolate intermediate that was synthesized by a reaction of [Pd(cod)(CH2TMS)2] with XPhos and α-acyloxyketone at room temperature, indicating facile C(sp3)−O bond disconnection.  相似文献   

9.
We show that arylpalladium(II) reagents linked to biotin and indocyanine dye residues can be prepared by decarboxylative palladation of appropriately substituted electron-rich benzoic acid derivatives. When prepared under the conditions described, these organometallic intermediates are tolerant of air and water, can be stored for several months in solution in dimethyl sulfoxide, and permit biotin- and indocyanine dye-labeling of functionally complex olefinic substrates in water by Heck-type coupling reactions.  相似文献   

10.
Loy RN  Sanford MS 《Organic letters》2011,13(10):2548-2551
A new Pd-catalyzed reaction for the coupling between perfluoroalkyl iodides (R(F)I) and simple aromatic substrates is described. The perfluoroalkylated arene products are obtained in good to excellent yields in the presence of a phosphine-ligated Pd catalyst and Cs(2)CO(3) as a base. The development, optimization, scope, and preliminary mechanistic studies of these transformations are reported.  相似文献   

11.
Preparations of novel unsymmetrical, tridentate nitrogen ligand precursors, PhN=C(CMe2)(NPh)C=N(CH2)2NMe2(1) and PhN=C(CMe2)(NPh)C=N(CH2)Py (2), are described. Treatment of 1 with 1 molar equiv. (COD)PdCl2 in the presence of NEt3 or with 1 molar equiv. Pd(OAc)2 affords orthometallated palladium(II) complexes, [PhN=C(CMe2)(N-eta1-Ph)C=N(CH2)2NMe2]PdX (X=Cl (3); X=OAc (4)), respectively. Compound can be yielded via the reaction of with an excess of LiCl in methanol. Treatment of with 1 molar equiv. of (COD)PdCl2, Pd(OAc)2 or Pd(TFA)2 affords orthometallated palladium(II) complexes, [PhN=C(CMe2)(N-eta1-Ph)C=NCH2Py]PdX (X=Cl (5); X=OAc (6); X=TFA (7)), respectively. The crystal and molecular structures are reported for compounds 2, 3, 5 and 6. The application of these novel palladacyclic complexes to the Heck reaction with aryl halide substrates was examined.  相似文献   

12.
A catalytic method for the decarboxylative coupling of 2-(azaaryl)carboxylates with aryl halides is described. The decarboxylative cross-coupling presented is mediated by a system catalytic in both palladium and copper without requiring stoichiometric amounts of organometallic reagents or organoboronic acids. This method circumvents additional synthetic steps required to prepare 2-azaaryl organometallics and organoborates as nucleophilic coupling partners, which are prone to protodemetallation and protodeborylation and produce potentially toxic byproducts.  相似文献   

13.
A simple route to diaryl sulfides using a decarboxylative palladium-catalyzed reaction between electron-rich 2,6-dialkoxybenzoic acid derivatives and diaryl disulfides is reported. This coupling proceeds efficiently in the presence of Pd(CF(3)CO(2))(2) and Ag(2)CO(3) in a 65:1 mixture of 1,4-dioxane and tetramethylene sulfoxide (TMSO). We present also the first formation of a carbon-selenium bond via a palladium-catalyzed decarboxylative cross-coupling.  相似文献   

14.
MCM‐41‐supported tridentate nitrogen palladium(II) complex [MCM‐41‐3 N‐Pd(II)] was conveniently synthesized from commercially available and cheap 3‐(2‐aminoethylamino)propyltrimethoxysilane via immobilization on MCM‐41, followed by reacting with pyridine‐2‐carboxaldehyde and PdCl2. It was found that this palladium complex is an excellent catalyst for the Suzuki–Miyaura coupling reaction of aryl bromides on two points: (i) the use of 5 × 10−4 mol equiv. of MCM‐41‐3 N‐Pd(II) under air afforded the coupling products efficiently after easy workup; (2) the catalyst can be reused many times without loss of catalytic activity. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
An efficient Pd‐catalyzed three‐component coupling reaction of allyl carboxylates, norbornenes and diboronates is described, which allows efficient assembly of C(sp3)—C(sp3) and C(sp3)—B bonds in a single process. Moreover, this approach shows advantages of good chemo‐ and regioselectivity, as well as good substrates suitability.  相似文献   

16.
The tetrahedral intermediate 3 has been intercepted during Pd(II)-cycloalkenylation of olefinic enolsilane 1 (R=SiMe2t-Bu). In a related manner, the allyl and crotyl enol ethers 5–8 give with Pd(OAc)2 acetoxy tetrahydrofurans (9, 12, 14, 16), convertible to butyrolactones or furans; competing Pd(II)-mediated Claisen rearrangement was not observed. The intramolecular Pd(II)-cycloalkenylation of the ketene acetal 17 leads to δ-lactones 18 and 19.  相似文献   

17.
The Pd(II)-catalyzed direct coupling of arene C-H bonds with organoboron reagents assisted by the 2-pyridylsulfinyl group is reported. Methylboronic acid and arylboronic acid neopentyl esters proved to be efficient coupling partners, furnishing methylated arenes and biaryl products in moderate to good yields. The 2-pyridylsulfinyl group can be easily removed to provide the free biaryls. The essential role of the 2-pyridyl unit in stabilizing the cyclopalladation complex was demonstrated by X-ray diffraction analysis of the palladacycle intermediate.  相似文献   

18.
The direct decarboxylative arylation of α‐oxo acids has been achieved by synergistic visible‐light‐mediated photoredox and nickel catalysis. This method offers rapid entry to aryl and alkyl ketone architectures from simple α‐oxo acid precursors via an acyl radical intermediate. Significant substrate scope is observed with respect to both the oxo acid and arene coupling partners. This mild decarboxylative arylation can also be utilized to efficiently access medicinal agents, as demonstrated by the rapid synthesis of fenofibrate.  相似文献   

19.
A bimetallic catalyst system has been developed that for the first time allows the decarboxylative cross‐coupling of aryl and acyl carboxylates with aryl triflates. In contrast to aryl halides, these electrophiles give rise to non‐coordinating anions as byproducts, which do not interfere with the decarboxylation step that leads to the generation of the carbon nucleophilic cross‐coupling partner. As a result, the scope of carboxylate substrates usable in this transformation was extended from ortho‐substituted or otherwise activated derivatives to a broad range of ortho‐, meta‐, and para‐substituted aromatic carboxylates. Two alternative protocols have been optimized, one involving heating the substrates in the presence of CuI/1,10‐phenanthroline (10–15 mol %) and PdI2/phosphine (2–3 mol %) in NMP for 1–24 h, the other involving CuI/1,10‐phenanthroline (6–15 mol %) and PdBr2/Tol‐BINAP (2 mol %) in NMP using microwave heating for 5–10 min. While most products are accessible using standard heating, the use of microwave irradiation was found to be beneficial especially for the conversion of non‐activated carboxylates with functionalized aryl triflates. The synthetic utility of the transformation is demonstrated with 48 examples showing the scope and limitations of both protocols. In mechanistic studies, the special role of microwave irradiation is elucidated, and further perspectives of decarboxylative cross‐couplings are discussed.  相似文献   

20.
By using Pd(TFA)(2)/PCy(3) as a catalyst, a broad range of aromatic carboxylic acids, including heteroaromatic carboxylic acids, efficiently underwent decarboxylative coupling with an array of polyfluoroarenes in the presence of stoichiometric amount of silver salts to generate biaryls. Silver salts were adjusted to the reactivity of aromatic carboxylic acids to efficiently suppress the protodecarboxylation and therefore improve decarboxylative cross-couplings. It was established that the palladium complex containing the PCy(3) ligand was capable of catalyzing the decarboxylation of electron-rich aromatic carboxylic acids, and silver salts promoted the decarboxylation of both electron-rich and -deficient ones. To explain the two different decarboxylation processes, two possible reaction pathways are proposed, which were further supported by the facts that the stoichiometric arylpalladium complex can directly arylate pentafluorobenzene in the presence of PCy(3) and the arylpalladium complex can catalyze the decarboxylative coupling of 2,4-dimethoxybenzoic acid with pentafluorobenzene. The kinetic isotope effect of 4.0 clearly showed that the C-H bond cleavage of polyfluoroarenes is involved in the rate-determining step.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号