首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SiO2 coatings onto stainless steel substrates have been prepared by sol-gel in order to study the performance and mechanism of attack in different corrosive solutions. The electrochemical behaviour of the samples has been evaluated by Electrochemical Impedance Spectroscopy using NaCl and HCl as electrolytes. Comparative tests have been performed on samples with one and two silica layers as well as on uncoated ones. SiO2 coatings produce no important protection of stainless steels subjected to electrochemical corrosion. This behaviour may be explained by micropores and microcracks produced during the coating sintering.  相似文献   

2.
AISI 304 Stainless Steel is widely used in different industrial fields because of its mechanical and corrosion properties. However, its tendency to corrosion in presence of halide ions limits the applications. One strategy to improve the corrosion resistance is the use of coatings barriers containing corrosion inhibitors in their formulation. The lanthanides present attractive green and corrosion properties for the substitution of chromates, which are the most common substances used as corrosion protection. However, these compounds are highly toxic, and an intense effort is being undertaken to replace them. Cerium is a good alternative because of its relatively low cost and abundance. It fulfils the basics requirements for being considered an alternative inhibitor: the ions form insoluble hydroxides and they present low toxicity. Inorganic and hybrid sol-gel coatings have been developed to increase the corrosion resistance of metals and they provide an excellent vehicle for the incorporation of secondary phases including particles and metal ions as cerium ions. The aim of this work was to study the influence of the incorporation of cerium ions in hybrid silica sol-gel coatings deposited on AISI 304 stainless steel as substrate as a potential replacement of chromate treatments. This system should combine the barrier protection effect of silica coating with the corrosion inhibitor effect of the cerium ions inside the coatings. After 7 days of immersion in NaCl, coated substrates showed lower current densities than the bare steel, although the coatings produced from Ce (III) salts experience a slight weakening in time and those obtained from Ce (IV) chemicals evidence an enhance in the coating performance, probably due to the plugging of corrosion products in the defective areas of the film.  相似文献   

3.
Sol-Gel Coatings on Metals   总被引:4,自引:0,他引:4  
Sol-gel derived films can be deposited on metals to improve their resistance to oxidation and corrosion or to modify their surface properties. However, practical applications are limited by problems intrinsic to sol-gel processing or specific of coating/metal systems. Coatings aimed to improve oxidation and wet corrosion resistance have been the most studied. The results published in the literature show that sol-gel coatings may offer good protection against oxidation. More difficult is to achieve a protection against wet corrosion. An important aspect of the application of the sol-gel method for coating metallic objects is also the deposition technique.  相似文献   

4.
Glass-like sol-gel coatings have been investigated as corrosion protective coatings on stainless steel. Magnesium- and borosilicate coatings with thickness of about 100–700 nm and methyl-modified SiO2 coatings with a thickness of about 2 m were deposited on stainless steel plates by dip-coating. The coatings were densified between 400°C and 500°C in different atmospheres (N2, air) for 1 h. The corrosion protection against gaseous attack was investigated by accelerated corrosion tests, at 800°C in air for 1 h. A corrosion protection factor was calculated from the relation Fe/Fe2O3, determined by XRD on the surface of coated and uncoated samples. Methyl-modified SiO2 coatings showed a protection factor, which was 2 orders of magnitude higher than for the other coatings. Electrochemical investigations were performed on samples submerged in a NaCl solution for 200 h. The corrosion propagation, polarization resistance and impedance vector were measured. For accelerated corrosion tests, polarization intensity curves were determined for high potentials of up to 1 V. Again excellent results were obtained for the methyl-modified SiO2 coatings, which remained passive for 200 h. Results of the salt spray corrosion test, however, showed no corrosion protection by the sol-gel coatings. After 2000 h in the salt spray chamber the steel was corroded and the coatings peeled off. It is concluded that for the further development of these coatings an improved interfacial passivation will be required.  相似文献   

5.
ZrO2 coatings for corrosion protection were deposited on 304 stainless steel by sol-gel method using zirconium propoxide as precursor and densified in air and in oxygen-free (argon or nitrogen) atmospheres. XRD and IR data of the films were practically independent of the atmosphere used in the densification step showing that the ceramic oxide is properly formed from the precursor. The corrosion behavior of the stainless steel substrate was studied by potentiodynamic polarization curves in the absence and the presence of ZrO2 coatings prepared in air, argon or nitrogen. The coatings extended the lifetime of the material by a factor of almost eight in a very aggressive environment, independently of the preparation procedure. The possibility of depositing pure or mixed oxide films by sol-gel methods in the absence of additional oxygen will allow the preparation of specific coatings onto oxygen-reactive substrates.  相似文献   

6.
A chrome‐free conversion coating treatment for magnesium by phytic acid solution was developed. The immersion experiments were used for evaluating the effects of the processing parameters (such as conversion temperature and time, concentration and pH value of phytic acid solution) on the corrosion resistance of the phytic acid conversion coating. The morphologies and compositions of the coatings were determined by SEM and EDS respectively. The experimental results indicated that the corrosion resistance of the conversion coating formed in the solution containing 0.5% phytic acid at 25°C and pH=4 for 30 min was higher than that of natural oxide, and the conversion coating formed on the surface of magnesium was of multilayer mainly consisting of Mg, C, O and P. The thicknesses of the conversion coatings were approximately 1.0–15 µm and the conversion coatings presented obvious network‐like cracks. The electrochemical potentiodynamic polarization experiment indicated that the free corrosion potential of the magnesium with phytic acid conversion coating was increased, and its corrosion current and corrosion rate declined in 3.5% NaCl solution. Phytic acid conversion coating could improve the electrochemical property of magnesium and provide effective protection, which can improve the corrosion resistance of magnesium.  相似文献   

7.
Powders and thin coatings of ceria and titania were synthesized from aqueous and solvent-based precursors. Thin coatings were deposited on polished 304 stainless steel coupons by dipping them in the appropriate sol-gel oxide precursors. The coatings were subsequently densified and crystallized at several hundreds of degrees. It was possible to obtain dense titania coatings by applying thin coatings of cerium dioxide prior to titania on stainless steel substrates. Underlayer ceria coatings proved to be pivotal in obtaining dense titania coatings and preserving the integrity of the stainless steel while going through the high temperature treatments. The effect of processing parameters such as the atmosphere of heat-treatment, and temperature on the microstructure and crystal structure of the films and powders of ceria and titania was investigated. X-ray diffraction was used to identify the crystal structure of films and powders upon heat-treatment. Electrochemical measurements in NaCl, and analytical techniques such as SEM and EDX were used to evaluate the corrosion performance and pitting morphology of coated samples. A composite coating of ceria and titania was able to prevent crevice corrosion and increase the pitting resistance of the 304 stainless steel relative to the uncoated substrate.  相似文献   

8.
Sol-gel hybrid organic-inorganic and inorganic SiO2-based protective coatings with and without added 3 m glass particles were developed and tested for their corrosion and wear behavior of an stainless steel substrate (AISI316L). The corrosion resistance greatly increases by incorporating glass particles in the sols. The incorporation of particles in the coatings allows the synthesis of thicker crack-free coatings. On the other hand, the corrosion resistance increases for coatings with a higher organic content obtained at lower sintering temperature. These coatings are also highly stable in saline aqueous solutions. However, the wear resistance is badly affected by the hybrid character of the SiO2 matrix. The optimum coating process in terms of corrosion and wear resistance, appears to be a hybrid system with a dense SiO2 network achieved at intermediate sintering temperatures.  相似文献   

9.
The zinc coating of mild undergoes rapid corrosion for a short period of time in harsh environments. This affects the durable life and overall performance of the zinc coatings. The electrochemical, oxidation, and wear performance, as well as the surface morphological properties of new nanocomposites coating formulations of zinc reinforced with calcium oxide nanoparticles, were studied in order to improve the corrosion and wear performance of zinc coatings. A current density of 1.5–2.0 A/cm2 was used for the electrodeposition. The wear, oxidation, hardness, corrosion rate, and morphological properties were evaluated. The characterization of these composite coatings showed low wear rates and higher corrosion and oxidation resistance. At 1.5A/cm2 current density, a 65.53% enhancement in the hardness values and 57.14% oxidation protection were obtained. The smaller crystallite size of the deposited sample is the main reason for the lower corrosion and wear resistance and higher hardness values obtained. It was established that waste oyster can be used for the electrodeposition of mild steel to enhance corrosion resistance and hardness values. CaOnp made from oyster shells has been shown to make mild steel more resistant to corrosion, wear, and oxidation.  相似文献   

10.
在高强钢表面制备了防护性溶胶凝胶涂层,并研究了不同浓度二氧化硅纳米粒子的加入对于涂层形貌、耐蚀性和硬度的影响。采用扫描电子显微镜(SEM)和电子能谱(EDS)观察了涂层的微观结构和成分;采用显微硬度计测试了涂层的硬度;采用电化学方法研究了二氧化硅纳米粒子的浓度对于涂层耐蚀性能的影响;采用傅里叶红外光谱研究涂层的化学结构,进而探讨了二氧化硅纳米粒子对于涂层的强化机理。结果显示涂层加入二氧化硅纳米粒子的最佳浓度为500 mg.L-1,此条件下的涂层表面均匀致密,有较高的硬度并且在3.5%NaCl溶液中体现出较好的耐蚀作用。纳米粒子在溶胶中反应形成活性羟基基团并与硅烷发生反应生成空间网状结构,从而强化涂层。  相似文献   

11.
Powder coatings found a wider use in corrosion protection of steel structure. In Europe very often double-layer systems are used, based on an adhesion promoting epoxy (EP) primer and a weathering stable top coat, mostly polyester (SP) sometimes EP/SP-hybrid powders. An interesting development is the use of zinc filled EP powders as primer to offer a cathodic protection to the steel surface. Powder systems with and without zinc were compared to proved coating systems based on liquid paint materials, where powder coating systems showed results comparable to these systems. Besides many advantages of powder coatings for corrosion protection there are still some problems. The workshops carring out the powder coating have to be in control of the surface pretreatment like chromating, but espescially phosphating and the work with the chromate-free pretreatment methods for galvanized steel. As always in the field of corrosion protection it is the surface pretreatment and preparation which determines the quality of the whole coating system decisively. This problem can be solved by appropriate working. In some years the problem with the general maintenance of powder coatings after weathering and ageing will be actual. This problem should be solved because of the homogeneous coatings on larger areas. Of importance will be the adhesion on the old coating and the appearance of the maintenance coating. The touch up of smaller parts as transport damages will be much more difficult in order to the appearance.  相似文献   

12.
The production of eco-friendly hybrid sol–gel coatings for long term protection of metallic substrates from aggressive environments was one of the emerging areas, competing with conventional chromate and phosphate coatings. Herein, a nanocomposite has been synthesized from TiO2 and PVA through a novel sol-gel route and the structure and morphology of the same was characterized using X-ray diffraction, FTIR, UV–Vis spectroscopy, FESEM with EDAX, and AFM studies. The flower-like structured composite offers excellent corrosion protection properties in NaCl solution of sea water salinity. Impedance and polarization studies were carried out to monitor the anticorrosion performance of the materials coating. This coating on mild steel offers 98% inhibition efficiency in NaCl. The influence of loading PVA on TiO2 and its effect on corrosion efficiency have also been investigated. It is found that an optimum weight of 20 wt% PVA is required in the composite for beneficial corrosion resistance. 92% inhibition efficiency is registered by the coated MS in NaCl solution after 40 days of exposure and is quite encouraging compared to many of the recent reports. The Ti–O–Ti, and Fe-Ti-O linkage along with compactness and adherence of the material together contribute to better blocking of steel corrosion.  相似文献   

13.
Hybrid coatings based on polydimethylsiloxane-cured organically modified silicate were synthesized through a sol-gel technique. Amino-terminated siloxane, 3-glycidoxypropyltrimethoxysilane and tetraethoxysilane were used as precursors for the hybrid coatings. These hybrid films were deposited via spin coating onto an aluminum alloy to improve the corrosion protection. The effects induced by the different chain lengths of siloxane on the chain dynamics, thermal stability and corrosion performance of the coated samples were investigated. The rotating-frame spin-lattice relaxation times and scale of the spin-diffusion path length indicated that the configuration of the hybrid films was highly crosslinked, dense and adhered to the aluminum alloy substrates. The thermal stability and the apparent activation energy, evaluated by van Krevelen's method, of the hybrid coatings depended on the siloxane chain length. Potentiodynamic analysis revealed that the hybrid films provided exceptional barrier and corrosion protection in comparison with untreated aluminum alloy substrates.  相似文献   

14.
Electroactive conducting polymers for corrosion control   总被引:1,自引:0,他引:1  
This paper reviews the literature describing the effects of conducting polymer coatings on the corrosion rate of ferrous alloys (iron, steel and stainless steel). The literature is interpreted in terms of the proposed mechanisms of corrosion protection: barrier, inhibitor, anodic protection and the mediation of oxygen reduction. The most intriguing aspect of the reported literature are the studies demonstrating corrosion protection when deliberate defects were introduced into the coating to expose the bare metal. These studies show that protection afforded by conducting polymer coatings is not due to simple barrier protection or inhibition alone. Many studies illustrate that the polymer/metal interface is modified to produce passivating oxide layers and that charge transfer reactions occur between the metal and polymer. These studies support the proposed anodic protection mechanism, as do the reports of significant ennoblism. On the other hand, there is considerable variation in the reported shift in corrosion potential and these highlight the influence of substrate preparation, coating composition and mode of application and the nature of the electrolyte on the corrosion protection provided by the conducting polymer. For example, the evidence suggests that the emeraldine base form of polyaniline is superior to the emeraldine salt in terms of corrosion protection for steel. However, the number of direct comparisons is small and the reasons for the differences are not well understood. Also not well understood are the role of the counterion release and local pH changes on pinhole protection. It is also argued that the conducting polymer reduces the likelihood of large increases in pH at the polymer/metal interface and so stabilizes the coating against cathodic disbondment. Further work is clearly needed to increase the protection period by further studies on the corrosion protection mechanism so that the polymer composition and processing methods may be optimized.  相似文献   

15.
Hydroxyl-epoxy phosphate (HEP) as a reactive corrosion inhibitor was innovatively synthesized by the reaction of bisphenol A epoxy resin with phosphoric acid. HEP was mixed with hydroxyl acrylate resin, and crosslinked with waterborne isocyanate curing agent, which was used to form waterborne HEP/acrylic polyurethane composite (HEP-APU) coatings on Q235 steel surfaces. Electrochemical impedance spectroscopy and polarization curves were applied to analyze the corrosion behavior of the HEP-APU coatings in 3.5wt% NaCl solutions. The results indicated that the HEP-APU coatings show a superior passivation property and efficient corrosion protection of Q235 steel. The waterborne acrylic polyurethane coating containing 0.5wt% HEP exhibited the best corrosion performance among all the coating specimens. The improved flash-rust resistance can be attributed to the introduction of the phosphate group which could form phosphate film on the steel substrate.  相似文献   

16.
Graphene nanosheets are widely used in anti-corrosion polymeric coating as filler,owing to the excellent electrochemical inertness and barrier property.However,as the arrangement of graphene nanosheets is difficult to form a perfect layered structure,polymeric coating with graphene nanosheets usually needs micron-scale thickness to ensure the enhancement of corrosion protection.In this work,layer-by-layer stacked graphene nanocoatings were fabricated on stainless steel by self-assembly based on Marangoni effect.The anti-corrosion property of graphene coatings were studied through Tafel polarization curves,electrochemical impedance spectroscopy and accelerated corrosion test with extra applied voltage.The self corrosion current density of optimized three-layered graphene coated sample was one quarter of that of bare stainless steel.And the self corrosion potential of optimized sample is increased to-0.045 V.According to the results,graphene nanocoatings composed of layered nanosheets exhibits good anticorrosion property.Besides,the self-assembly method provide a promising approach to make layeredstructure coating for other researches about 2 D material nanosheets.  相似文献   

17.
The aim of this work has been the preparation and evaluation of sol-gel coatings for clinical applications. Research was focussed in the development of highly corrosion resistant and/or bioactive sol-gel coatings onto AISI 316L stainless steel. Hybrid SiO2 sol-gel coatings inhibited corrosion and Fe diffusion, although no signal of bioactivity was detected. The inclusion of Ca- and P-alcoxides in the sol composition did not promote bioactivity. Bioactive coatings were obtained from suspensions prepared by adding glass (CaO·SiO2·P2O5) particles to an hybrid organic-inorganic SiO2 sol. The dissolution of glass particles promoted in vitro induction of apatite along with a slight reduction in the corrosion resistance of coated pieces. By combining an inner SiO2 hybrid film acting as barrier against corrosion with an outer coating containing bioactive glass particles, a significant improvement in the electrochemical behaviour was observed. This double-layered coating showed in vitro signals of bioactivity, and preliminary in vivo tests gave promising results.  相似文献   

18.
The effect of thermal annealing of poly(3-octylthiophene) (P3OT) and polystyrene (PS) blend coatings on the corrosion inhibition of stainless steel in a 0.5 M NaCl solution was investigated. P3OT was synthesized by direct oxidation of the 3-octylthiophene monomer with ferric chloride (FeCl3) as oxidant. Stainless steel electrodes with mirror finish were coated with P3OT/PS blend by drop-casting technique. In order to study the temperature effect on the function like physical barrier against the corrosive species of P3OT/PS polymeric blend, the coatings were thermally annealed at three different temperatures (55?°C, 80?°C, and 100?°C). The corrosion behavior of P3OT/PS-coated stainless steel was investigated in 0.5 M NaCl at room temperature, by using potentiodynamic polarization curves, linear polarization resistance (LPR), and electrochemical impedance spectroscopy. The LPR values indicated that, at 100?°C, P3OT/PS coatings showed a better protection of the 304 stainless steel in 0.5 M NaCl; the corrosion rate diminished in two orders of magnitude with regard to the bare stainless steel. The superficial morphology of the coatings before and after the corrosive environment was researched by atomic force microscopy, optic microscopy, and scanning electronic microscopy. Morphological study showed that the increased temperature benefited the integration of the two polymeric phases, which improved the barrier properties of the coatings. The coating/metal adhesion and the coating thickness were evaluated. The temperature increases the adhesion degree coating/substrate; thus, the coating annealed at 100?°C showed the best adhesion.  相似文献   

19.
《印度化学会志》2021,98(12):100243
This study introduces varying concentrations of graphene oxide (GO) as a filler into zinc chromate in forming composite coatings to improve the corrosion protection of mild steel. The purity of synthesized GO was inferred through the application of complementary characterization techniques, including FT-IR, XRD, Raman, SEM-EDX, and TEM analyses. GO doped zinc chromate coatings were deposited on the surface of mild steel through the brushing method. Electrochemical studies, i.e., electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PD) were conducted to elucidate the anticorrosion properties of the coated mild steel exposed to 0.5 ​M HCl solution. It was revealed that the highest anticorrosion protection was attained at low doping amount of 0.5% of GO with a corrosion rate of 0.036 mpy. Surface analyses revealed that incorporating GO into zinc chromate coating can effectively improve the anticorrosion properties and adhesion strength.  相似文献   

20.
TiO_2/316L不锈钢薄膜电极在NaCl溶液中的耐腐蚀性能   总被引:8,自引:0,他引:8  
应用sol gel法和提拉技术于 316L不锈钢表面构筑纳米TiO2薄膜,再经水热后处理以消除膜中的细小龟裂.SEM和XRD技术表征膜的形貌和厚度,线性极化法分别考察膜厚度、pH、和Cl浓度对纳米膜电极耐腐蚀性能影响.电化学交流阻抗检测纳米TiO2膜在 0. 5mol/LNaCl溶液中的阻抗随浸泡时间的变化,光电子能谱技术测定了经浸泡 1008h后的纳米膜中各元素相对百分含量和价态.结果表明:在中性或碱性条件下,厚度为 375~464nm的纳米膜其耐腐蚀性随浸泡时间的延长呈现初期增加而后稳定,浸泡 48h后腐蚀电流较之浸泡初期降低 2个数量级,耐腐蚀电阻增加 2个数量级,在浸泡 1 008h内没有发现腐蚀的产物,Fe是以原子态扩散到膜中.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号