首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The compound K2Cu3US5 was obtained by the reaction of K2S, UCl4, CuCl, and S at 973 K. K2Cu3US5 crystallizes in a new structure type in space group Cmcm of the orthorhombic system in a cell of dimensions a = 3.9374(6) A, b = 13.813(2) A, c = 17.500(3) A, and V = 951.8(2) A3 at 153 K. The structure comprises (2)(infinity)[UCu3S52-] slabs separated by K+ cations. The slabs are built from CuS4 tetrahedra and US6 octahedra. Their connectivity differs from other known octahedral/tetrahedral packing patterns. In the temperature range 130-300 K the compound exhibits Curie-Weiss magnetic behavior with mu(eff) = 2.45(8) mu(B). This result together with both the bond distances and bond valence calculations and the absence of a Cu2+ ESR signal support the formulation of the above compound as K+2Cu+3U5+S2-5.  相似文献   

2.
Reaction of U(NEt(2))(4) with HS-2,4,6-(t)Bu(3)C(6)H(2) (HSMes) gave U(SMes)(3)(NEt(2))(py) (1), whereas similar treatment of U[N(SiMe(3))SiMe(2)CH(2)][N(SiMe(3))(2)](2) afforded U(SMes)[N(SiMe(3))(2)](3) (2) and U(SMes)(3)[N(SiMe(3))(2)]. The first neutral homoleptic uranium(IV) thiolate to have been crystallographically characterized, U(SMes)(4) (4), was isolated from the reaction of U(BH(4))(4) and KSMes. The first homoleptic thiolate complex of uranium(III), U(SMes)(3) (5), was synthesized by protonolysis of U[N(SiMe(3))(2)](3) with HSMes in cyclohexane. The crystal structure of 5 exhibits the novel eta(3) ligation mode for the arylthiolate ligand. Comparison of the crystal structure of 5 with those of the isomorphous lanthanide congeners Ln(SMes)(3) (Ln = La, Ce, Pr, and Nd) indicates that the U-S, U-C(ipso)(), and U-C(ortho)() bond lengths are shorter than the corresponding ones in the 4f-element analogues, when taking into account the variation in the ionic radii of the metals. The distance between the uranium and the carbon atoms involved in the U...H-C epsilon agostic interaction of each thiolate ligand is shorter, by approximately 0.05 A, than that expected from a purely ionic bonding model. The lanthanide(III)/actinide(III) differentiation was analyzed by density functional theory (DFT). The nature of the M-S bond is shown to be ionic strongly polarized at the sulfur for M = U and iono-covalent (i.e. strongly ionic with low orbital interaction), for M = Ln. The strength of the U...H-C epsilon agostic interaction is proposed to be controlled by the maximization of the interaction between U(+) and S(-) under steric constraints. The eta(3) ligation mode of the arylthiolate ligand is also obtained from DFT.  相似文献   

3.
Wang X  Andrews L  Li J 《Inorganic chemistry》2006,45(10):4157-4166
Reactions of laser-ablated U atoms and H2O2 molecules produce UO2, H2UO2, and UO2(OH)2 as major products and U(OH)2 and HU(O)OH as minor products. Complementary information is obtained from similar reactions of U atoms with D2O2, with H2 + O2 mixtures, and with H2O in excess Ar. Through extensive relativistic density functional theory calculations, we have determined the geometry structures and ground states of these U species with a variety of oxidation states U(II), U(IV), U(V), and U(VI). The calculated vibrational frequencies, IR intensities, and isotopic frequency ratios are in good agreement with the experimental values, thus supporting assignments of the observed matrix IR spectra. We propose that the reactions proceed by forming an energized [U(OH)4] intermediate from reactions of the excited U atom with two H2O2 molecules. Because of the special stability of the U(VI) oxidation state, this intermediate decomposes to the UO2(OH)2 molecule, which reveals a distinctive difference between the chemistries of U and Th, where the major product in analogous Th reactions is the tetrahedral Th(OH)4 molecule owing to the stable Th(IV) oxidation state.  相似文献   

4.
The microwave spectrum of 1-thia-closo-decaborane(9), 1-SB(9)H(9), has been investigated in the 12-61 GHz spectral region. The molecule has C(4v) symmetry. The spectra of five isotopomers have been assigned, and a precise substitution structure of the non-hydrogen atoms has been determined. It was found that the axial sulfur atom causes a substantial expansion of the B(4) belt adjacent to sulfur and hence leads to a significant distortion from a regular bicapped square antiprismatic structure. The experimental work has been supplemented by high-level ab initio (MP2/6-311G**) and density functional theory calculations (B3LYP/6-311G** and B3LYP/cc-pVTZ). The agreement between the substitution structure and the two DFT calculations is very good in each case. The agreement is considerably poorer for the MP2/6-311G** calculations, particularly for the sulfur-boron bond length.  相似文献   

5.
Reaction of UCl4 with 3 or 4 mol equiv of Na2dddt (dddt = 5,6-dihydro-1,4-dithiine-2,3-dithiolate) in THF afforded the first example of a tetrakis(dithiolene) metal compound, [Na4(THF)8U(dddt)4](infinity) (1). The red crystals of 1 are composed of infinite zigzag chains in which Na2(micro-THF)3 fragments ensure the linking of Na2(THF)5U(dddt)4 moieties; the uranium atom is in a dodecahedral environment of eight sulfur atoms. Treatment of UCl4 with 3 mol equiv of Na2dddt in pyridine gave a mixture of tris- and tetrakis(dithiolene) compounds. After addition of 18c6 (18-crown-6), only the tris(dithiolene) complex was obtained and crystallized as orange crystals of [Na(18c6)(py)2]2[U(dddt)3].2py (2.2py) in which the isolated [U(dddt)3]2- anion adopts a slightly distorted trigonal prismatic configuration. A few red crystals of the unsolvated complex 2 and the trinuclear anionic compound [Na(18c6)(py)2]3[Na{U(dddt)3}2] (3) were also obtained along with orange crystals of 2.2py. All the tris(dithiolene) compounds exhibit large folding of the dddt ligand and significant interaction between the C=C double bond and the metal center.  相似文献   

6.
The compound Ba(8)Hg(3)U(3)S(18) was obtained from the solid-state reaction at 1123 K of U, HgS, BaS, and S, with BaBr(2)/KBr or BaCl(2) as a flux. This material crystallizes in a new structure type in space group P6 of the hexagonal system with three formula units in a cell of dimensions a = 27.08(1) ?, c = 4.208(2) ?, and V = 2673(2) ?(3). The structure contains infinite chains of US(6) octahedra and nearly linear [S-Hg-S](2-) dithiomercurate anions, separated by Ba(2+) cations. In the temperature range 100-300 K, the paramagnetic behavior of Ba(8)Hg(3)U(3)S(18) can be fit to the Curie-Weiss law, resulting in μ(eff) = 5.40(4) μ(B), or 3.12(2) μ(B)/U. The compound displays an antiferromagnetic transition at T(N) = 59 K. Although the formal oxidation states of Ba, Hg, and S can be assigned as +2, +2, and -2, the oxidation state of U is less certain. On the basis of interatomic distance arguments and the magnetic susceptibility data, the compound is proposed to contain U in both +4 and +5 formal oxidation states.  相似文献   

7.
Laser evaporation of carbon rich uranium/carbon alloy targets into condensing argon or neon matrix samples gives weak infrared absorptions that increase on annealing, which can be assigned to new uranium carbon bearing species. New bands at 827.6 cm(-1) in solid argon or 871.7 cm(-1) in neon become doublets with mixed carbon 12 and 13 isotopes and exhibit the 1.0381 carbon isotopic frequency ratio for the UC diatomic molecule. Another new band at 891.4 cm(-1) in argon gives a three-band mixed isotopic spectrum with the 1.0366 carbon isotopic frequency ratio, which is characteristic of the anti-symmetric stretching vibration of a linear CUC molecule. No evidence was found for the lower energy cyclic U(CC) isomer. Other bands at 798.6 and 544.0 cm(-1) are identified as UCH, which has a uranium-carbon triple bond similar to that in UC. Evidence is found for bicyclic U(CC)(2) and tricyclic U(CC)(3). This work shows that U and C atoms react spontaneously to form the uranium carbide U≡C and C≡U≡C molecules with uranium-carbon triple bonds.  相似文献   

8.
Two‐electron reductive carbonylation of the uranium(VI) nitride [U(TrenTIPS)(N)] ( 2 , TrenTIPS=N(CH2CH2NSiiPr3)3) with CO gave the uranium(IV) cyanate [U(TrenTIPS)(NCO)] ( 3 ). KC8 reduction of 3 resulted in cyanate dissociation to give [U(TrenTIPS)] ( 4 ) and KNCO, or cyanate retention in [U(TrenTIPS)(NCO)][K(B15C5)2] ( 5 , B15C5=benzo‐15‐crown‐5 ether) with B15C5. Complexes 5 and 4 and KNCO were also prepared from CO and the uranium(V) nitride [{U(TrenTIPS)(N)K}2] ( 6 ), with or without B15C5, respectively. Complex 5 can be prepared directly from CO and [U(TrenTIPS)(N)][K(B15C5)2] ( 7 ). Notably, 7 reacts with CO much faster than 2 . This unprecedented f‐block reactivity was modeled theoretically, revealing nucleophilic attack of the π* orbital of CO by the nitride with activation energy barriers of 24.7 and 11.3 kcal mol?1 for uranium(VI) and uranium(V), respectively. A remarkably simple two‐step, two‐electron cycle for the conversion of azide to nitride to cyanate using 4 , NaN3 and CO is presented.  相似文献   

9.
In the reaction of TAS-fluoride, (Me2N)3S+Me3SiF2-, with carbonyl sulfur difluoride imides RC(O)NSF2 (R = F, CF3), C-N bond, cleavage is observed, and TAS+RC(O)F2- and NSF are the final products. From TASF and RC(O)NS(CF3)F, the salts TAS+RC(O)NS(CF3)F2- (R = F (14), CF3 (15)), with psi-pentacoordinate sulfur centers in the anions, are formed. An X-ray structure investigation of 14 shows that the fluorine atoms occupy axial positions and CF3, NC(O)F, and the sulfur lone pair occupy equatorial positions of the trigonal bipyramid. The -C(O)F group lies in the equatorial plane with the CO bond synperiplanar to the SN bond. According to B3LYP calculations, this structure corresponds to a global minimum and the expected axial orientation of the -C(O)F group represents a transition state. Calculations for the unstable FC(O)NSF3- anion show a different geometry. The -C(O)F group deviates 40 degrees from axial orientation, and the equatorially bonded fluorine is, in contrast to the -CF3 group in 14, syn positioned.  相似文献   

10.
As a result of the accident at the Chernobyl nuclear power plant (NPP) the environment was contaminated with spent nuclear fuel. The 236U isotope was used in this study to monitor the spent uranium from nuclear fallout in soil samples collected in the vicinity of the Chernobyl NPP. Nuclear track radiography was applied for the identification and extraction of hot radioactive particles from soil samples. A rapid and sensitive analytical procedure was developed for uranium isotopic ratio measurement in environmental samples based on double-focusing inductively coupled plasma mass spectrometry (DF-ICP-MS) with a MicroMist nebulizer and a direct injection high-efficiency nebulizer (DIHEN). The performance of the DF-ICP-MS with a quartz DIHEN and plasma shielded torch was studied. Overall detection efficiencies of 4 x 10(-4) and 10(-3) counts per atom were achieved for 238U in DF-ICP-QMS with the MicroMist nebulizer and DIHEN, respectively. The rate of formation of uranium hydride ions UH+/U+ was 1.2 x 10(-4) and 1.4 x 10(-4), respectively. The precision of short-term measurements of uranium isotopic ratios (n = 5) in 1 microg L(-1) NBS U-020 standard solution was 0.11% (238U/235U) and 1.4% (236U/238U) using a MicroMist nebulizer and 0.25% (235U/238U) and 1.9% (236U/P38U) using a DIHEN. The isotopic composition of all investigated Chernobyl soil samples differed from those of natural uranium; i.e. in these samples the 236U/238U ratio ranged from 10(-5) to 10(-3). Results obtained with ICP-MS, alpha- and gamma-spectrometry showed differences in the migration properties of spent uranium, plutonium, and americium. The isotopic ratio of uranium was also measured in hot particles extracted from soil samples.  相似文献   

11.
Black single crystals of A(6)Cu(12)U(2)S(15) (A = K, Rb, Cs) have been synthesized by the reactive flux method. These isostructural compounds crystallize in the cubic space group Ia ?3d at room temperature. The structure comprises a three-dimensional framework built from US(6) octahedra and CuS(3) trigonal planar units with A cations residing in the cavities. There are no S-S bonds in the structure. To elucidate the oxidation state of U in these compounds, various physical property measurements and characterization methods were carried out. Temperature-dependent electrical resistivity measurement on a single crystal of K(6)Cu(12)U(2)S(15) showed it to be a semiconductor. These three A(6)Cu(12)U(2)S(15) (A = K, Rb, Cs) compounds all exhibit small effective magnetic moments, < 0.58 μ(B)/U and band gaps of about 0.55(2) eV in their optical absorption spectra. From X-ray absorption near edge spectroscopy (XANES), the absorption edge of A(6)Cu(12)U(2)S(15) is very close to that of UO(3). Electronic band structure calculations at the density functional theory (DFT) level indicate a strong degree of covalency between U and S atoms, but theory was not conclusive about the formal oxidation state of U. All experimental data suggest that the A(6)Cu(12)U(2)S(15) family is best described as an intermediate U(5+)/U(6+) sulfide system of (A(+))(6)(Cu(+))(12)(U(5+))(2)(S(2-))(13)(S(-))(2) and (A(+))(6)(Cu(+))(12)(U(6+))(2)(S(2-))(15).  相似文献   

12.
[UI(3)(THF)(4)] reacts at room temperature with 2 equiv of KBp(tBu,Me), in toluene, yielding [U(kappa(3)-H(mu-H)B(pz(tBu,Me))(pz(Me,tBu)))(2)I] (1). This unprecedented complex, stabilized by two asymmetric heteroscorpionate ligands, is formed due to an isomerization process promoted in situ by the metal center. To find a general method for preparing this type of compound, we synthesized the novel asymmetric K[H(2)B(pz(tBu,Me))(pz(Me2))], and by a straightforward salt metathesis with [UI(3)(THF)(4)] the novel bis-asymmetric complex [U(kappa(3)-H(mu-H)B(pz(tBu,Me))(pz(Me2)))(2)I] (2) was isolated and characterized in the solid state and in solution. As indicated by X-ray crystallographic analysis, the U(III) in 1 and 2 is seven-coordinated by two tridentate asymmetric dihydrobis(pyrazoly)borates and by an iodide. In both cases, the coordination geometry around the metal is very distorted, the pentagonal bipyramid being the one which better describes the arrangement of the atoms around the U(III). An approximate C(2) axis can be defined in the solid state, and is maintained in solution as indicated by the (1)H NMR spectrum of 1 and 2. In the course of attempting to crystallize some of the compounds, monocrystals of the dimer [U(kappa(3)-Bp(tBu,Me))(Hpz(tBu,Me))I(mu-I)](2) (3) were isolated. In this compound each U(III) atom is seven-coordinated by one kappa(3)-Bp(tBu,Me), by one terminal and by two bridging iodide ligands, and by a monodentate Hpz(tBu,Me), exhibiting a distorted 4:3 tetragonal base-trigonal geometry.  相似文献   

13.
The reactions of Ga(CH(2)CH(3))(3) with variable amounts of elemental sulfur, S(8), in toluene or benzene at different temperatures result in the insertion of sulfur into the Ga-C bonds to form the compounds Ga[(S-S)CH(2)CH(3)](3) (I) and Ga[(S-S-S)CH(2)CH(3)](3) (II). Compound I was isolated from the reaction at low temperature while at room temperature; compound II was the major product. Compound II exhibited the maximum extent of sulfur insertion even when the reactions were carried out with more than 9.0 equiv of sulfur. The reactions of Ga(CH(3))(3) with various amounts of sulfur in toluene or benzene only result in the formation of compound III, Ga[(S-S)CH(3)](3). In pyridine at -30 degrees C, deinsertion of the sulfur atoms from Ga-S-S-C bonds was observed for the first time from compounds I and III resulting in formation of the six-membered Ga-S ring compounds IV, [PyEtGaS](3), and V, [PyMeGaS](3), respectively. Compounds IV and V were characterized by (1)H NMR, (13)C NMR, elemental analyses, thermogravimetric analysis, and single-crystal X-ray diffraction. Compound IV crystallized in the monoclinic space group P2(1)/n, with a = 9.288(2) ?, b = 14.966(2) ?, c = 19.588(3) ?, beta = 90.690(10) degrees, and Z = 4. Compound V crystallized in the monoclinic space group P2(1)/c, with a = 10.385(1) ?, b = 15.300(2) ?, c = 15.949(2) ?, beta = 107.01(1) degrees, Z = 4, unit cell volume = 2423.5(5) ?(3), R = 0.030, and R(w) = 0.026. The sulfur insertion reaction pathway was investigated by time-dependent and variable-temperature (1)H NMR spectroscopy.  相似文献   

14.
Isotope fractionation in the U(III)-U(IV) reaction system was investigated by a series of atomic relativistic ab initio calculations using the multiconfigurational Dirac-Coulomb Hartree-Fock method. To evaluate the nuclear volume effect on the fractionation, the Fermi statistical distribution function was adopted for nuclear charge density. The isotope fractionation coefficient epsilon resulting from the nuclear volume difference was evaluated from the total electronic energies of U3+ and U4+, based on the theoretical equation proposed by Bigeleisen [J. Am. Chem. Soc. 118, 3676 (1996)]. The calculated fractionation coefficient epsilon in the present work for the isotopic pair 235U and 238U at 293 K is 0.0031, which is quite close to the experimentally observed value of 0.0027. Discussion is extended to the nuclear volume effects on isotopic fractionations in the Pu(III)-Pu(IV) and Eu(II)-Eu(III) exchange systems.  相似文献   

15.
Methionine is an essential amino acid and is the primary source of sulfur for humans. Using the double spike (33S‐36S) multi‐collector thermal ionization mass spectrometry (MC‐TIMS) technique, three sample bottles of a methionine material obtained from the Institute for Reference Materials and Measurements have been measured for δ34S and sulfur concentration. The mean δ34S value, relative to Vienna Canyon Diablo Troilite (VCDT), determined was 10.34 ± 0.11‰ (n = 9) with the uncertainty reported as expanded uncertainties (U). These δ34S measurements include a correction for blank which has been previously ignored in studies of sulfur isotopic composition. The sulfur concentrations for the three bottles range from 56 to 88 µg/g. The isotope composition and concentration results demonstrate the high accuracy and precision of the DS‐MC‐TIMS technique for measuring sulfur in methionine. Published in 2010 by John Wiley & Sons, Ltd.  相似文献   

16.
Laser-ablated U atoms co-deposited with CO in excess neon produce the novel CUO molecule, which forms distinct Ng complexes (Ng=Ar, Kr, Xe) with the heavier noble gases. The CUO(Ng) complexes are identified through CO isotopic and Ng reagent substitution and comparison to results of DFT frequency calculations. The U[bond]C and U[bond]O stretching frequencies of CUO(Ng) complexes are slightly red-shifted from neon matrix (1)Sigma(+) CUO values, which indicates a (1)A' ground state for the CUO(Ng) complexes. The CUO(Ng)(2) complexes in excess neon are likewise singlet molecules. However, the CUO(Ng)(3) and CUO(Ng)(4) complexes exhibit very different stretching frequencies and isotopic behaviors that are similar to those of CUO(Ar)(n) in a pure argon matrix, which has a (3)A" ground state based on DFT vibrational frequency calculations. This work suggests a coordination sphere model in which CUO in solid neon is initially solvated by four or more Ne atoms. Up to four heavier Ng atoms successively displace the Ne atoms leading ultimately to CUO(Ng)(4) complexes. The major changes in the CUO stretching frequencies from CUO(Ng)(2) to CUO(Ng)(3) provides evidence for the crossover from a singlet ground state to a triplet ground state.  相似文献   

17.
<正> (Ph4P)2[Ni3(u-SC3H6S)4].2CH3CN was obtained from the reaction of NiCl2.6H2O,Na2(1,2-pdt)(pdtH2=CH3CH(SH)CH2SH) and Ph4PBr.Mr=1361. 80, P21/c,a=10.802(2),b=30.111 (7),c=9. 907(3) A ,B=93. 60(3) ;V= 3216. 0 A3;Z=2,Dc=1. 41g/cm3. The three Ni atoms of the anion are linearly arranged and bridged by four sulfur atoms from the four 1 ,2-propyldithiolato ligands.  相似文献   

18.
U(VI), Np(VI), and Pu(VI) borates with the formula AnO(2)[B(8)O(11)(OH)(4)] (An = U, Np, Pu) have been prepared via the reactions of U(VI) nitrate, Np(VI) perchlorate, or Pu(IV) or Pu(VI) nitrate with molten boric acid. These compounds are all isotypic and consist of a linear actinyl(VI) cation, AnO(2)(2+), surrounded by BO(3) triangles and BO(4) tetrahedra to create an AnO(8) hexagonal bipyramidal environment. The actinyl bond lengths are consistent with actinide contraction across this series. The borate anions bridge between actinyl units to create sheets. Additional BO(3) triangles and BO(4) tetrahedra extend from the polyborate layers and connect these sheets together to form a three-dimensional chiral framework structure. UV-vis-NIR absorption and fluorescence spectroscopy confirms the hexavalent oxidation state in all three compounds. Bond-valence parameters are developed for Np(VI).  相似文献   

19.
<正> Ni[(C6H11O)2PS2]2, Mr=627.39, Monoclinic, P21/n, a=11.802(7), b= 9.336(2), c=14.177(5) A,B=96.72(4)°,V=1551.3A3, Z=2, Dc=1.343g·cm-3, MoKα radiation λ=0.71073A, F(000)=648e, R=0.068 for 2642 reflections. Ni(Ⅱ) atom is surrounded by four sulfur atoms, forming a square.  相似文献   

20.
The three-coordinate nickel-carbene complex (dtbpe)Ni=CPh2 (3) was prepared from the thermolysis of the diphenyldiazoalkane complex (dtbpe)Ni(N,N':eta2-N2CPh2) (2) (dtbpe = 1,2-bis(di-tert-butylphosphino)ethane). Complex 3 was structurally characterized by single-crystal X-ray diffraction methods (Ni-C = 1.836(2) A). Complex 3 reacts with 2 equiv of CO2 to afford (dtbpe)Ni{OC(O)CPh2C(O)O} (4), with diphenylketene to give (dtbpe)Ni{OC(=CPh2)CPh2} (5), with excess CO to transfer the carbene fragment and generate diphenylketene and (dtbpe)Ni(CO)2 (6), with sulfur dioxide to give the metallasulfone (dtbpe)Ni{C,S:eta2-S(O)2CPh2} (7), and with the Br?nsted acid [HNMe2Ph][B(C6F5)4] to give the alkyl cation [(dtbpe)Ni(CHPh2)][B(C6F5)4] (8). Complexes 4, 5, and 7 have also been characterized by single-crystal X-ray diffraction methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号