首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dimers [Cu(2)(dppm)(2)(CN-t-Bu)(3)](BF(4))(2) and [Ag(2)(dppm)(2)(CN-t-Bu)(2)](X)(2) (X(-) = BF(4)(-), ClO(4)(-)) and the coordination polymers [[M(diphos)(CN-t-Bu)(2)]BF(4)](n) (M = Cu, Ag; diphos = bis(diphenylphosphino)butane (dppb), bis(diphenylphosphino)pentane (dpppen), bis(diphenylphosphino)hexane (dpph)), [[Ag(2)(dppb)(3)(CN-t-Bu)(2)](BF(4))(2)](n), and [[Ag(dpppen)(CN-t-Bu)]BF(4)](n) have been synthesized and fully characterized as model materials for the mixed bridging ligand polymers which exhibit the general formula [[M(diphos)(dmb)]BF(4)](n) (M = Cu, Ag; dmb = 1,8-diisocyano-p-menthane) and [[Ag(dppm)(dmb)]ClO(4)](n). The identity of four polymers ([[Ag(dppb)(CN-t-Bu)(x)]BF(4)](n) (x = 1, 2), [[Ag(2)(dppb)(3)(CN-t-Bu)(2)](BF(4))(2)](n), [[Ag(dppm)(dmb)]ClO(4)](n)) and the two dimers has been confirmed by X-ray crystallography. The structure of [[Ag(dppm)(dmb)]ClO(4)](n) exhibits an unprecedented 1-D chain of the type "[Ag(dmb)(2)Ag(dppm)(2)(2+)](n)", where d(Ag(.)Ag) values between tetrahedral Ag atoms are 4.028(1) and 9.609(1) A for the dppm and dmb bridged units, respectively. The [[Ag(dppb)(CN-t-Bu)(x)]BF(4)](n) polymers (x = 1, 2) form zigzag chains in which the Ag atoms are tri- and tetracoordinated, respectively. The [[Ag(2)(dppb)(3)(CN-t-Bu)(2)](BF(4))(2)](n) polymer, which is produced from the rearrangement of [[Ag(dppb)(CN-t-Bu)(2)]BF(4)](n), forms a 2-D structure described as a "honeycomb" pattern, where large [Ag(dppb)(+)](6) macrocycles each hosting two counterions and two acetonitrile guest molecules are observed. Properties such as glass transition temperature, morphology, thermal decomposition, and luminescence in the solid state at 293 K are reported. The luminescence bands exhibit maxima between 475 and 500 nm with emission lifetimes ranging between 6 and 55 micros. These emissions are assigned to a metal-to-ligand charge transfer (MLCT) of the type M(I) --> pi(NC)/pi(PPh(2)).  相似文献   

2.
A new strategy to synthesize organometallic oligomers is presented and consists of using the title diisocyanide and chelated metal fragments with bis(diphenylphosphine)alkanes. The title materials are synthesized by reacting the [M(dppe)(BF4)] and [M2(dppp)2](BF4)2 complexes (M = Cu, Ag; dppe = bis(diphenylphosphino)ethane, dppp = bis(diphenylphosphino)propane) with dmb and the Pd2-bonded d9-d9 Pd2(dmb)2Cl2 dimer with dppe or dppp. The model compounds [M(diphos)(CN-t-Bu)2]BF4 (M = Cu, Ag) and [Pd2(diphos)2(CN-t-Bu)2](ClO4)2 (diphos = dppe, dppp) have been prepared and characterized as well for comparison purposes. Three of the model compounds were also characterized by X-ray crystallography to establish the diphosphine chelating behavior. The materials are amorphous and have been characterized from the measurements of the intrinsic viscosity, DSC, TGA, and XRD, as well as their capacity for making stand-alone films. The intrinsic viscosity data indicate that the Cu and Pd2 materials are oligomeric in solution (approximately 8-9 units), while the Ag materials are smaller. For [[Cu(dppe)(dmb)]BF4]n, a glass transition is reproducibly observed at about 82 degrees C (DeltaCp = 0.43 J/(g deg)), which suggests that these materials are polymeric in the solid state. The Cu and Ag species are luminescent in the solid state at room temperature exhibiting lambda(max) and tau(e) (emission lifetime) around 480-550 nm and 18-48 micros, respectively, while the Pd2 species are not luminescent under these conditions. During the course of this study, the unsaturated [M2(dppp)2](BF4)2 starting materials (M = Cu, Ag) were prepared, one of which (M = Ag) was characterized by crystallography. The bridging behavior of the dppp ligand in this case contrasts with the chelating behavior seen for the saturated [Cu(dppp)(CN-t-Bu)2]BF4 complex.  相似文献   

3.
The reactions of four flexible tetradentate ligands, 1,3-bis(2-pyridylthio)propane (L1), 1,4-bis(2-pyridylthio)butane (L2), 1,5-bis(2-pyridylthio)pentane (L3) and 1,6-bis(2-pyridylthio)hexane (L4) with AgX (X = BF4-, ClO4-, PF6-, or CF3SO3-) lead to the formation of seven new complexes: [AgL1(BF4)]2 (1), [[AgL2](ClO4)]infinity (2), [[AgL2(CH3CN)](PF6)]infinity (3), [[AgL3](BF4)(CHCl3)]2 (4), [[AgL3(CF3SO3)](CH3OH)(0.5)]infinity (5), [[Ag2L4(2)](BF4)2]infinity (6), and [[AgL4](PF6)]infinity (7), which have been characterized by elemental analyses, IR spectroscopy, and X-ray crystallography. Single-crystal X-ray analyses show that complexes 1 and 4 possess dinuclear macrometallacyclic structures, and complexes 2, 3 and 5-7 take chain structures. In all the complexes, the nitrogen atoms of ligands preferentially coordinate to silver atoms to form normal coordination bonds, while the sulfur atoms only show weak interactions with silver atoms and the intermolecular AgS weak contacts connect the low-dimensional complexes into high-dimensional supramolecular networks. Additional weak interactions, such as pi-pi stacking, F...F weak interactions, Ag...O contacts or C-H...O hydrogen bonds, also help to stabilize the crystal structures. It was found that the parity of the -(CH2)n- spacers (n = 3-6) affect the orientation of the two terminal pyridyl rings, thereby significantly influence the framework formations of these complexes. The coordination features of ligands and their conformation changes between free and coordination states have been investigated by DFT calculations.  相似文献   

4.
Two enantiomers of [Bu(4)N](3)[Cu(3)(mnt)(3)] () formed by Na(2)(mnt) (mnt = maleonitriledithiolate, [S(2)C(2)(CN)(2)](2-)) and CuCl in a 1 : 1 molar ratio react further with MCl (M = Cu or Ag) involving both the enantiomers of to produce the larger complex, [Bu(4)N](4)[Cu(6)M(2)(mnt)(6)] (M = Cu (2), Ag (3)) from which the capped Cu(+) or Ag(+) ion can readily be removed by Bu(4)NX (X = Cl, Br), reverting or back to . Such reversal does not work with non-coordinating anions like BF(4)(-), ClO(4)(-) and PF(6)(-).  相似文献   

5.
Studies on the subtle effects and roles of polyatomic anions in the self-assembly of a series of AgX complexes with 2,4'-Py(2)S (X(-) = NO(3)(-), BF(4)(-), ClO(4)(-), PF(6)(-), CF(3)CO(2)(-), and CF(3)SO(3)(-); 2,4'-Py(2)S = 2,4'-thiobis(pyridine)) have been carried out. The formation of products appears to be primarily associated with a suitable combination of the skewed conformers of 2,4'-Py(2)S and a variety of coordination geometries of Ag(I) ions. The molecular construction via self-assembly is delicately dependent upon the nature of the anions. Coordinating anions afford the 1:1 adducts [Ag(2,4'-Py(2)S)X] (X(-) = NO(3)(-) and CF(3)CO(2)(-)), whereas noncoordinating anions form the 3:4 adducts [Ag(3)(2,4'-Py(2)S)(4)]X(3) (X(-) = ClO(4)(-) and PF(6)(-)). Each structure seems to be constructed by competition between pi-pi interactions of 2,4'-Py(2)S spacers vs Ag.X interactions. For ClO(4)(-) and PF(6)(-), an anion-free network consisting of linear Ag(I) and trigonal Ag(I) in a 1:2 ratio has been obtained whereas, for the coordinating anions NO(3)(-) and CF(3)CO(2)(-), an anion-bridged helix sheet and an anion-bridged cyclic dimer chain, respectively, have been assembled. For a moderately coordinating anion, CF(3)SO(3)(-), the 3:4 adduct [Ag(3)(2,4'-Py(2)S)(4)](CF(3)SO(3))(3) has been obtained similarly to the noncoordinating anions, but its structure is a double strand via both face-to-face (pi-pi) stackings and Ag.Ag interactions, in contrast to the noncoordinating anions. The anion exchanges of [Ag(3)(2,4'-Py(2)S)(4)]X(3) (X(-) = BF(4)(-), ClO(4)(-), and PF(6)(-)) with BF(4)(-), ClO(4)(-), and PF(6)(-) in aqueous media indicate that a [BF(4)(-)] analogue is isostructural with [Ag(3)(2,4'-Py(2)S)(4)]X(3) (X(-) = ClO(4)(-) and PF(6)(-)). Furthermore, the anion exchangeability for the noncoordinating anion compounds and the X-ray data for the coordinating anion compounds establish the coordinating order to be NO(3)(-) > CF(3)CO(2)(-) > CF(3)SO(3)(-) > PF(6)(-) > ClO(4)(-) > BF(4)(-).  相似文献   

6.
The 1:1 reaction between the d(9)-d(9) Pd(2)(dmb)(2)Cl(2) complex (dmb = 1,8-diisocyano-p-menthane) and the diphosphine ligands (diphos) bis(diphenylphosphino)butane (5, dppb), bis(diphenylphosphino)pentane (6, dpppen), bis(diphenylphosphino)hexane (7, dpph), and bis(diphenylphosphino)acetylene (8, dpa) in the presence of LiClO(4) leads to the [[Pd(2)(dmb)(2)(diphos)](ClO(4))(2)](n) polymers. These new materials are characterized by NMR ((1)H, (13)C, (31)P), IR, Raman, and UV-vis spectroscopies (466 < lambda(max)(dsigma-dsigma*) < 480 nm), by ATG, XRD, and DSC methods, and by the capacity to make stand-alone films. From the measurements of the intrinsic viscosity in acetonitrile, the M(n) ranges from 16000 to 18400 (12 to 16 units). The dinuclear model complex [Pd(2)(dmb)(2)(PPh(3))(2)](ClO(4))(2) (4) is prepared and investigated as well. The molecular dynamic of the title polymers in acetonitrile solution is investigated by means of (13)C spin-lattice relaxation time (T(1)) and nuclear Overhauser enhancement methods (NOE). The number of units determined by T(1)/NOE methods is 3 to 4 times less than that found from the measurements of intrinsic viscosity, and is due to flexibility in the polymer backbone, even for bridging ligands containing only one (dmb) or two C-C single bonds (dpa). During the course of this study, the starting material Pd(2)(dmb)(2)Cl(2) was reinvestigated after evidence for oligomers in the MALDI-TOF spectrum was noticed. In solution, this d(9)-d(9) species is a binuclear complex (T(1)/NOE). This result suggests that the structure of the title polymers in solution and in the solid state may not be the same either. Finally, these polymers are strongly luminescent in PrCN glasses at 77 K, and the photophysical data (emission lifetimes, 1.50 < tau(e) < 2.75 ns; quantum yields, 0.026 < Phi(e) < 0.17) are presented. X-ray data for [Pd(2)(dppe)(2)(dmb)(2)](PF(6))(4): monoclinic, space group C2/c, a = 24.3735 A, b = 21.8576(13) A, c = 18.0034(9) A, b = 119.775(1) degrees, V = 8325.0(8) A(3), Z = 4.  相似文献   

7.
Dong YB  Sun T  Ma JP  Zhao XX  Huang RQ 《Inorganic chemistry》2006,45(26):10613-10628
Four new oxadiazole-bridging ligands (L1-L4) were designed and synthesized by the reaction of 2,5-bis(2-hydroxyphenyl)-1,3,4-oxadiazole with isonicotinoyl chloride and nicotinoyl chloride, respectively. L1 and L3 are unsymmetric single-armed ligands (4- or 3-pyridinecarboxylate arm), and L2 and L4 are symmetric double-armed ligands (4- or 3-pyridinecarboxylate arms). Nine new complexes, [Ag(L1)]PF6.CH3OH (1), [Ag(L1)]ClO4.CH3OH (2), Cu(L2)(NO3)2.2(CH2Cl2) (3), [Cu(L2)2](ClO4)2.2(CH2CCl2) (4), Cu(L2)Cl2 (5), [Cu4(L3)2(H2O)2](L3)4(ClO4)4 (6), [Ag(L4)(C2H5OH)]ClO4 (7), [Ag(L4)(C2H5OH)]BF4 (8), and [Ag(L4)(CH3OH)]SO3CF3 (9), were isolated from the solution reactions based on these four new ligands, respectively. L1, L2, and L3 act as convergent ligands and bind metal ions into discrete molecular complexes. In contrast, L4 exhibits a divergent spacer to link metal ions into one-dimensional coordination polymers. New coordination compounds were fully characterized by infrared spectroscopy, elemental analysis, and single-crystal X-ray diffraction. In addition, the luminescent and electrical conductive properties of these new compounds were investigated.  相似文献   

8.
New thermoplastic organometallic materials of the type [[M(dmb)2]TCNQ.xTCNQo.y solvent], (M = Cu(I), Ag(I); dmb = 1,8-diisocyano-p-menthane; TCNQ = 7,7,8,8-tetracyano-p-quinodimethane, x = 0, 0.5, 1.0, 1.5; solvent = none, THF or toluene) have been prepared and characterized from X-ray powder diffraction patterns, X-ray crystallography (for some Ag polymers), DSC, and conductivity measurements. While the [[M(dmb)2]TCNQ.xTCNQo]n polymers (M = Cu,Ag; x = 0, 0.5) are insulating, the others (x = 1.0 and 1.5) are semiconducting, and the relative conductivity is found to be a function of the molecular weight and crystallinity. The [[Cu(dmb)2]TCNQ.1.5TCNQ]n material is also photoconducting, while the Ag analogue is not. Photochemical and luminescence quenching experiments in the solid-state established that the Cu+ center and TCNQo act as electron donor and acceptor, respectively, in this photoprocess. Finally photocells of the type glass/SnO2/[Cu(dmb)2]TCNQ.TCNQo]n + 0.5 acceptor/Al (acceptor = TCNQo, C60 and TCNN (13,13,14,14-tetracyano-5,12-naphthacenequinodimethane)) have been designed and characterized. The quantum yields (number of photoproduced electrons/number of photons) are as follows: TCNQ, 1.6 x 10(-4), C60, 5 x 10(-5), TCNN, 3.0 x 10(-4) at lambdaexc = 330 nm. X-ray data for [[Ag(dmb)2]TCNQ.2THF]n: space group P2(1/c), monoclinic, a = 13.5501(10), b = 9.9045(10), c = 32.564(2) A, beta = 91.130(10) degrees, Z = 4. X-ray data for [[Ag(dmb)2]TCNQ.0.5TCNQo.0.5 toluene]n: space group P2(1/c), monoclinic, a = 14.3669(19), b = 9.1659(3), c = 34.012(3) A, beta = 92.140(8) degrees, Z = 4. X-ray data for [[Ag(dmb)2]TCNQ.1.5TCNQo]n: space group C2/c, monoclinic, a = 25.830(11), b = 9.680(2), c = 42.183(19) A, beta = 104.87(4) degrees, Z = 8. X-ray data for [[Ag(dmb)2]DCTC]n: space group P2(1/a), monoclinic, a = 26.273(3), b = 9.730(3), c = 31.526(3) A, beta = 112.12(2)degrees, Z = 4.  相似文献   

9.
Detter LD  Pachuta SJ  Cooks RG  Walton RA 《Talanta》1986,33(11):917-918
Vacuum-promoted ligand loss has been detected for the complexes [Ag(CNMe)(4)]PF(6) (Me = methyl), [Ag(CN-t-Bu)(4)]ClO(4) (t-Bu = tert-butyl) and [Ag(CNCy)(4)]ClO(4) (Cy = cyclohexyl). The analogous Cu(I) isocyanide complexes are stable under the same conditions. These conclusions are based on infrared spectroscopy, secondary-ion mass-spectrometry (SIMS) and weight-loss measurements.  相似文献   

10.
The crystal structures of thirteen AgI coordination polymers involving py-CONH-(CH2)n-py (py=pyridine; n=0, 1) derivatives were determined by means of single-crystal X-ray analyses. All of the compounds form one-dimensional chains composed of AgI atoms and bridging ligands with formulas [[Ag(py-CONH-(CH2)n-py)][X]]n (X=PF6 -, ClO4 -, BF4 -, and NO3 - with solvent molecules). The unsymmetrical coordination environments around AgI atoms induce direction in the chains, that is, -[NH-(CH2)n-py-Ag-py-CO]-, which resembles the alignment of amino acid chains in proteins. In compounds [[Ag(4-pia)][X]]n (1 supersetX; 4-pia=N-(4-pyridyl)isonicotinamide; X=PF6 -, ClO4 -, BF4 -, and NO3 -), [[Ag(4-pmia)][X]]n (2 supersetX; 4-pmia=N-(pyridin-4-ylmethyl)isonicotinamide; X=PF6 -, ClO4 -H2O, and NO3 -H2O), and [[Ag(3-pmia)][X]]n (3 supersetX; 3-pmia=N-(pyridin-3-ylmethyl)isonicotinamide; X=PF6 -, ClO4 -, BF4 -, and NO3 -H2O), each chain is aligned parallel to neighboring chains, but adjacent chains run in the opposite direction. Particularly in [[Ag(3-pmia)][PF6]]n (3 supersetPF6 -), [[Ag(3-pmia)][ClO4]]n (3 supersetClO4 -), and [[Ag(3-pmia)][BF4]]n (3 supersetBF4 -), amide moieties of 3-pmia ligands are complementarily hydrogen bonded to amide moieties in neighboring chains, as in the beta-sheet motif in proteins. On the other hand, in [[Ag(4-pmna)][PF6]MeOH]n (4-pmna=N-(pyridin-4-ylmethyl)nicotinamide), all chains in the crystal form left-handed (4 a supersetPF6 -MeOH) and right-handed (4 b supersetPF6 -MeOH) helical structures with a helical pitch of 28 A. Heterogeneous anion exchanges proceed reversibly in 2, but not in 3, which provides information about the thermal stabilities of the crystals.  相似文献   

11.
Complexes [Ir(Cp*)Cl(n)(NH2Me)(3-n)]X(m) (n = 2, m = 0 (1), n = 1, m = 1, X = Cl (2a), n = 0, m = 2, X = OTf (3)) are obtained by reacting [Ir(Cp*)Cl(mu-Cl)]2 with MeNH2 (1:2 or 1:8) or with [Ag(NH2Me)2]OTf (1:4), respectively. Complex 2b (n = 1, m = 1, X = ClO 4) is obtained from 2a and NaClO4 x H2O. The reaction of 3 with MeC(O)Ph at 80 degrees C gives [Ir(Cp*){C,N-C6H4{C(Me)=N(Me)}-2}(NH2Me)]OTf (4), which in turn reacts with RNC to give [Ir(Cp*){C,N-C6H4{C(Me)=N(Me)}-2}(CNR)]OTf (R = (t)Bu (5), Xy (6)). [Ir(mu-Cl)(COD)]2 reacts with [Ag{N(R)=CMe2}2]X (1:2) to give [Ir{N(R)=CMe2}2(COD)]X (R = H, X = ClO4 (7); R = Me, X = OTf (8)). Complexes [Ir(CO)2(NH=CMe2)2]ClO4 (9) and [IrCl{N(R)=CMe2}(COD)] (R = H (10), Me (11)) are obtained from the appropriate [Ir{N(R)=CMe2}2(COD)]X and CO or Me4NCl, respectively. [Ir(Cp*)Cl(mu-Cl)]2 reacts with [Au(NH=CMe2)(PPh3)]ClO4 (1:2) to give [Ir(Cp*)(mu-Cl)(NH=CMe2)]2(ClO4)2 (12) which in turn reacts with PPh 3 or Me4NCl (1:2) to give [Ir(Cp*)Cl(NH=CMe2)(PPh3)]ClO4 (13) or [Ir(Cp*)Cl2(NH=CMe2)] (14), respectively. Complex 14 hydrolyzes in a CH2Cl2/Et2O solution to give [Ir(Cp*)Cl2(NH3)] (15). The reaction of [Ir(Cp*)Cl(mu-Cl)]2 with [Ag(NH=CMe2)2]ClO4 (1:4) gives [Ir(Cp*)(NH=CMe2)3](ClO4)2 (16a), which reacts with PPNCl (PPN = Ph3=P=N=PPh3) under different reaction conditions to give [Ir(Cp*)(NH=CMe2)3]XY (X = Cl, Y = ClO4 (16b); X = Y = Cl (16c)). Equimolar amounts of 14 and 16a react to give [Ir(Cp*)Cl(NH=CMe2)2]ClO4 (17), which in turn reacts with PPNCl to give [Ir(Cp*)Cl(H-imam)]Cl (R-imam = N,N'-N(R)=C(Me)CH2C(Me)2NHR (18a)]. Complexes [Ir(Cp*)Cl(R-imam)]ClO4 (R = H (18b), Me (19)) are obtained from 18a and AgClO4 or by refluxing 2b in acetone for 7 h, respectively. They react with AgClO4 and the appropriate neutral ligand or with [Ag(NH=CMe2)2]ClO4 to give [Ir(Cp*)(R-imam)L](ClO4)2 (R = H, L = (t)BuNC (20), XyNC (21); R = Me, L = MeCN (22)) or [Ir(Cp*)(H-imam)(NH=CMe2)](ClO4)2 (23a), respectively. The later reacts with PPNCl to give [Ir(Cp*)(H-imam)(NH=CMe2)]Cl(ClO4) (23b). The reaction of 22 with XyNC gives [Ir(Cp*)(Me-imam)(CNXy)](ClO4)2 (24). The structures of complexes 15, 16c and 18b have been solved by X-ray diffraction methods.  相似文献   

12.
The compounds fac-(κ(3)-PDP)Mo(CO)(3) {1; PDP = 2-[[2-(1-(pyridin-2-ylmethyl)pyrrolidin-2-yl)pyrrolidin-1-yl]methyl]pyridine}, [(cis-β-PDP)Mo(NO)(CO)]PF(6) ([cis-β-3]PF(6)), [(cis-α-PDP)Mo(NO)(CO)]PF(6) ([cis-α-3]PF(6)), [(cis-α-PDP)Mo(NO)Br]PF(6) ([4]PF(6)), [(trans-PDP)Cu](BF(4))(2)·CH(3)CN ([5](BF(4))(2)·CH(3)CN), and [(trans-PDP)Cu](OSO(2)CF(3))(2) ([5](OSO(2)CF(3))(2)) have been synthesized and structurally characterized by single-crystal X-ray diffraction. These are the first reported complexes of PDP on metal centers other than iron(II). The observed configurations indicate a broader range of accessible PDP topologies than has been reported. The {(cis-α-PDP)Mo(NO)}(+) fragment is found to be less π-basic than the dearomatizing {Tp(MeIm)Mo(NO)} fragment [Tp = hydridotris(1-pyrazolyl)borato; MeIm = 1-methylimidazole].  相似文献   

13.
Five novel Cd(II) coordination polymers with three structurally related flexible disulfoxide ligands, [[Cd(L1)3](ClO4)2]n (1), [[Cd(L2)3](ClO4)2(CHCl3)]n (2), [Cd(L2)(NO3)2(H2O)]n (3), [Cd2(L3)2(NO3)4]n (4) and [[Cd(L3)3](ClO4)2]n (5), where L1= 1,3-bis(phenylsulfinyl)propane, L2= 1,4-bis(phenylsulfinyl)butane and L3= 1,4-bis(ethylsulfinyl)butane, were synthesized and structurally determined by X-ray diffraction. Complex 1 has a 2D layer structure, in which part of the L1 ligands bridge the Cd(II) ions to form double-bridging chains and the other part of ligands link such chains to form a 2D framework. Complexes 2 and 5 are isomorphous, showing unusual 2D (3,6) network structures containing triangular grids. Complex 3 adopts a 2D (4,4) network formed by L2 linking the NO3- bridged (Cd-O-N-O-)n 1D zigzag chains. By contrast, is a 1D chain, in which two Cd(II) centers are bridged by mu2-O of sulfoxide groups to form a dinuclear unit, and L3 ligands link such dinuclear units to form a 1D double-bridging chain. The structural differences among such complexes show that the ligand nature and counter anions have important influences on the complex structures, which may provide a rational method for controlling the framework formation in metal-organic coordination polymers.  相似文献   

14.
The reaction of pyridylbis(3-hexamethyleneiminyl thiosemicarbazone) (H(2)Plhexim) with various silver(I) salts and metal-ligand ratios led to the isolation of different complexes of the formulae [Ag(NO(3))(H(2)Plhexim)]·H(2)O (1), [Ag(2)(NO(3))(H(2)Plhexim)(CH(3)OH)](NO(3)) (2), [Ag(2)(ClO(4))(2)(H(2)Plhexim)] (3), [Ag(HPlhexim)]·xH(2)O (4), [Ag(HPlhexim)] (4a), [Ag(2)(Plhexim)(PPh(3))(4)]·2MeOH (5) and [Ag(4)(Plhexim)(2)]·DMF (6). The complexes were fully characterized by elemental analysis, ESI mass spectrometry, IR and NMR ((1)H, (31)P) spectroscopy. The structures of 4a, 5 and 6 were also identified by single crystal X-ray structure determination. The concentration dependence on the absorption spectra of the methanolic solutions indicates polymerization equilibria in the ground state in both the ligand and the complexes. While H(2)Plhexim is essentially non-fluorescent, complexes 1-5 fluoresce more strongly by comparison. This fluorescent behavior is consistent with the monomeric or dimeric nature of the complexes.  相似文献   

15.
The reaction of the ligand 2-(2-trifluoromethyl)anilino-4,6-di-tert-butylphenol, H(2)((1)L(IP)), and PdCl(2) (2:1) in the presence of air and excess NEt(3) in CH(2)Cl(2) produced blue-green crystals of diamagnetic [Pd(II)((1)L(ISQ))(2)] (1), where ((1)L(ISQ))(*)(-) represents the o-iminobenzosemiquinonate(1-) pi radical anion of the aromatic ((1)L(IP))(2-) dianion. The diamagnetic complex 1 was chemically oxidized with 1 equiv of Ag(BF(4)), affording red-brown crystals of paramagnetic (S = (1)/(2)) [Pd(II)((1)L(ISQ))((1)L(IBQ))](BF(4)) (2), and one-electron reduction with cobaltocene yielded paramagnetic (S = (1)/(2)) green crystals of [Cp(2)Co][Pd(II)((1)L(ISQ))((1)L(IP))] (3); ((1)L(IBQ))(0) represents the neutral, diamagnetic quinone form. Complex 1 was oxidized with 2 equiv of [NO]BF(4), affording green crystals of diamagnetic [Pd(II)((1)L(IBQ))(2)](3)(BF(4))(4){(BF(4))(2)H}(2).4CH(2)Cl(2) (5). Oxidation of [Ni(II)((1)L(ISQ))(2)] (S = 0) in CH(2)Cl(2) solution with 2 equiv of Ag(ClO(4)) generated crystals of [Ni(II)((1)L(IBQ))(2)(ClO(4))(2)].2CH(2)Cl(2) (6) with an S = 1 ground state. Complexes 1-5 constitute a five-membered complete electron-transfer series, [Pd((1)L)(2)](n) (n = 2-, 1-, 0, 1+, 2+), where only species 4, namely, diamagnetic [Pd(II)((1)L(IP))(2)](2-), has not been isolated; they are interrelated by four reversible one-electron-transfer waves in the cyclic voltammogram. Complexes 1, 2, 3, 5, and 6 have been characterized by X-ray crystallography at 100 K, which establishes that the redox processes are ligand centered. Species 2 and 3 exhibit ligand mixed valency: [Pd(II)((1)L(ISQ))((1)L(IBQ))](+) has localized ((1)L(IBQ))(0) and ((1)L(ISQ))(*)(-) ligands in the solid state, whereas in [Pd(II)((1)L(ISQ))((1)L(IP))](-) the excess electron is delocalized over both ligands in the solid-state structure of 3. Electronic and electron spin resonance spectra are reported, and the electronic structures of all members of this electron-transfer series are established.  相似文献   

16.
Nitrosyl complexes with {Ru-NO} (6) and {Ru-NO} (7) configurations have been isolated in the framework of [Ru(trpy)(L)(NO)] ( n+ ) [trpy = 2,2':6',2'-terpyridine, L = 2-phenylimidazo[4,5- f]1,10-phenanthroline] as the perchlorate salts [ 4](ClO 4) 3 and [ 4](ClO 4) 2, respectively. Single crystals of protonated material [ 4-H (+)](ClO 4) 4.2H 2O reveal a Ru-N-O bond angle of 176.1(7) degrees and triply bonded N-O with a 1.127(9) A bond length. Structures were also determined for precursor compounds of [ 4] (3+) in the form of [Ru(trpy)(L)(Cl)](ClO 4).4.5H 2O and [Ru(trpy)(L-H)(CH 3CN)](ClO 4) 3.H 2O. In agreement with largely NO centered reduction, a sizable shift in nu(NO) frequency was observed on moving from [ 4] (3+) (1953 cm (-1)) to [ 4] (2+) (1654 cm (-1)). The Ru (II)-NO* in isolated or electrogenerated [ 4] (2+) exhibits an EPR spectrum with g 1 = 2.020, g 2 = 1.995, and g 3 = 1.884 in CH 3CN at 110 K, reflecting partial metal contribution to the singly occupied molecular orbital (SOMO); (14)N (NO) hyperfine splitting ( A 2 = 30 G) was also observed. The plot of nu(NO) versus E degrees ({RuNO} (6) --> {RuNO} (7)) for 12 analogous complexes [Ru(trpy)(L')(NO)] ( n+ ) exhibits a linear trend. The electrophilic Ru-NO (+) species [ 4] (3+) is transformed to the corresponding Ru-NO 2 (-) system in the presence of OH (-) with k = 2.02 x 10 (-4) s (-1) at 303 K. In the presence of a steady flow of dioxygen gas, the Ru (II)-NO* state in [ 4] (2+) oxidizes to [ 4] (3+) through an associatively activated pathway (Delta S++ = -190.4 J K (-1) M (-1)) with a rate constant ( k [s (-1)]) of 5.33 x 10 (-3). On irradiation with light (Xe lamp), the acetonitrile solution of paramagnetic [Ru(trpy)(L)(NO)] (2+) ([ 4] (2+)) undergoes facile photorelease of NO ( k NO = 2.0 x 10 (-1) min (-1) and t 1/2 approximately 3.5 min) with the concomitant formation of the solvate [Ru (II)(trpy)(L)(CH 3CN)] (2+) [ 2'] (2+). The photoreleased NO can be trapped as an Mb-NO adduct.  相似文献   

17.
Excited-state properties of fac-[Re(dmb)(CO)(3)(CH(3)CN)]PF(6), [Re(dmb)(CO)(3)](2) (where dmb = 4,4'-dimethyl-2,2'-bipyridine), and other tricarbonyl rhenium(I) complexes were investigated by transient FTIR and UV-vis spectroscopy in CH(3)CN or THF. The one-electron reduced monomer, Re(dmb)(CO)(3)S (S = CH(3)CN or THF), can be prepared either by reductive quenching of the excited states of fac-[Re(dmb)(CO)(3)(CH(3)CN)]PF(6) or by homolysis of [Re(dmb)(CO)(3)](2). In the reduced monomer's ground state, the odd electron resides on the dmb ligand rather than on the metal center. Re(dmb)(CO)(3)S dimerizes slowly in THF, k(d) = 40 +/- 5 M(-1) s(-1). This rate constant is much smaller than those of other organometallic radicals which are typically 10(9) M(-1) s(-1). The slower rate suggests that the equilibrium between the ligand-centered and metal-centered radicals is very unfavorable (K approximately 10(-4)). The reaction of Re(dmb)(CO)(3)S with CO(2) is slow and competes with the dimerization. Photolysis of [Re(dmb)(CO)(3)](2) in the presence of CO(2) produces CO with a 25-50% yield based on [Re]. A CO(2) bridged dimer, (CO)(3)(dmb)Re-CO(O)-Re(dmb)(CO)(3) is identified as an intermediate. Both [Re(dmb)(CO)(3)](2)(OCO(2)) and Re(dmb)(CO)(3)(OC(O)OH) are detected as oxidation products; however, the previously reported formato-rhenium species is not detected.  相似文献   

18.
The protonation of the phosphinito-bridged Pt(I) complex [(PHCy(2))Pt(μ-PCy(2)){κ(2)P,O-μ-P(O)Cy(2)}Pt(PHCy(2))](Pt-Pt) (1) by aqueous HBF(4) or hydrofluoric acid leads selectively to the hydrido-bridged solvento species syn-[(PHCy(2))(H(2)O)Pt(μ-PCy(2))(μ-H)Pt(PHCy(2)){κP-P(OH)Cy(2)}](Y)(2)(Pt-Pt) ([2-H(2)O]Y(2)) {Y = BF(4), F(HF)(n)} when an excess of acid was used. On standing in halogenated solvents, complex [2-H(2)O](BF(4))(2) undergoes a slow but complete isomerization to [(PHCy(2))(2)Pt(μ-PCy(2))(μ-H)Pt{κP-P(OH)Cy(2)}(H(2)O)](BF(4))(2)(Pt-Pt) ([4-H(2)O][BF(4)](2)) having the P(OH)Cy(2) ligand trans to the hydride. The water molecule coordinated to platinum in [2-H(2)O][BF(4)](2) is readily replaced by halides, nitriles, and triphenylphosphane, and the acetonitrile complex [2-CH(3)CN][BF(4)](2) was characterized by XRD analysis. Solvento species other than aqua complexes, such as [2-acetone-d(6)](2+) or [2-CD(2)Cl(2)](2+) were obtained in solution by the reaction of excess etherate HBF(4) with 1 in the relevant solvent. The complex [2-H(2)O](Y)(2) [Y = F(HF)(n)] spontaneously isomerizes into the terminal hydrido complexes [(PHCy(2))Pt(μ-PCy(2)){κ(2)P,O-μ-P(O)Cy(2)}Pt(H)(PHCy(2))](Y)(Pt-Pt) ([6](Y)). In the presence of HF, complex [6](Y) transforms into the bis-phosphanido-bridged Pt(II) dinuclear complex [(PHCy(2))(H)Pt(μ-PCy(2))(2)Pt{κP-P(OH)Cy(2)}](Y)(Pt-Pt) ([7](Y)). When the reaction of 1 with HF was carried out with diluted hydrofluoric acid by allowing the HF to slowly diffuse into the dichloromethane solution, the main product was the linear 60e tetranuclear complex [(PHCy(2)){κP-P(O)Cy(2)}Pt(1)(μ-PCy(2))(μ-H)Pt(2)(μ-PCy(2))](2)(Pt(1)-Pt(2)) (8). Insoluble compound 8 is readily protonated by HBF(4) in dichloromethane, forming the more soluble species [(PHCy(2)){κP-P(OH)Cy(2)}Pt(1)(μ-PCy(2))(μ-H)Pt(2)(μ-PCy(2))](2)(BF(4))(2)(Pt(1)-Pt(2)) {[9][BF(4)](2)}. XRD analysis of [9][BF(4)](2)·2CH(2)Cl(2) shows that [9](2+) is comprised of four coplanar Pt atoms held together by four phosphanido and two hydrido bridges. Both XRD and NMR analyses indicate alternate intermetal distances with peripheral Pt-Pt bonds and a longer central Pt···Pt separation. DFT calculations allow tracing of the mechanistic pathways for the protonation of 1 by HBF(4) and HF and evaluation of their energetic aspects. Our results indicate that in both cases the protonation occurs through an initial proton transfer from the acid to the phosphinito oxygen, which then shuttles the incoming proton to the Pt-Pt bond. The different evolution of the reaction with HF, leading also to [6](Y) or 8, has been explained in terms of the peculiar behavior of the F(HF)(n)(-) anions and their strong basicity for n = 0 or 1.  相似文献   

19.
We report the anion-templated syntheses of a variety of supramolecular assemblies of Co(II). Remarkably in the presence of a weakly coordinating ion such as BF(4) (-), a discrete three-dimensional cage [BF(4) subset(BF(4))(2)Co(2)(L(1))(4)][BF(4)] (2) is formed with three coordinated BF(4) (-) ions, a rare example in supramolecular chemistry (L(1)=di(benzimidazole)-1,4-phenylene). Switching to stronger coordinating ions, such as NO(3) (-) or Cl(-), a one-dimensional coordination polymer [[Co(L(1))(NO(3))(2)](n)] (3) and a metallomacrocycle [Co(2)(L(1))(2)(Cl)(4)] (5) were formed, respectively. These results illustrate the powerful effect of the anion-templating chemistry. Finally the magnetic properties of these assemblies 1 b, 2, 3, and 5 are presented and discussed.  相似文献   

20.
The synthesis and magnetic properties of 13 new homo- and heterometallic Co(II) complexes containing the artificial amino acid 2-amino-isobutyric acid, aibH, are reported: [Co(II)(4)(aib)(3)(aibH)(3)(NO(3))](NO(3))(4)·2.8CH(3)OH·0.2H(2)O (1·2.8CH(3)OH·0.2H(2)O), {Na(2)[Co(II)(2)(aib)(2)(N(3))(4)(CH(3)OH)(4)]}(n) (2), [Co(II)(6)La(III)(aib)(6)(OH)(3)(NO(3))(2)(H(2)O)(4)(CH(3)CN)(2)]·0.5[La(NO(3))(6)]·0.75(ClO(4))·1.75(NO(3))·3.2CH(3)CN·5.9H(2)O (3·3.2CH(3)CN·5.9H(2)O), [Co(II)(6)Pr(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)CN)(6)]·[Pr(NO(3))(5)]·0.41[Pr(NO(3))(3)(ClO(4))(0.5)(H(2)O)(1.5)]·0.59[Co(NO(3))(3)(H(2)O)]·0.2(ClO(4))·0.25H(2)O (4·0.25H(2)O), [Co(II)(6)Nd(III)(aib)(6)(OH)(3)(NO(3))(2.8)(CH(3)OH)(4.7)(H(2)O)(1.5)]·2.7(ClO(4))·0.5(NO(3))·2.26CH(3)OH·0.24H(2)O (5·2.26CH(3)OH·0.24H(2)O), [Co(II)(6)Sm(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)CN)(6)]·[Sm(NO(3))(5)]·0.44[Sm(NO(3))(3)(ClO(4))(0.5)(H(2)O)(1.5)]·0.56[Co(NO(3))(3)(H(2)O)]·0.22(ClO(4))·0.3H(2)O (6·0.3H(2)O), [Co(II)(6)Eu(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)OH)(4.87)(H(2)O)(1.13)](ClO(4))(2.5)(NO(3))(0.5)·2.43CH(3)OH·0.92H(2)O (7·2.43CH(3)OH·0.92H(2)O), [Co(II)(6)Gd(III)(aib)(6)(OH)(3)(NO(3))(2.9)(CH(3)OH)(4.9)(H(2)O)(1.2)]·2.6(ClO(4))·0.5(NO(3))·2.58CH(3)OH·0.47H(2)O (8·2.58CH(3)OH·0.47H(2)O), [Co(II)(6)Tb(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)CN)(6)]·[Tb(NO(3))(5)]·0.034[Tb(NO(3))(3)(ClO(4))(0.5)(H(2)O)(0.5)]·0.656[Co(NO(3))(3)(H(2)O)]·0.343(ClO(4))·0.3H(2)O (9·0.3H(2)O), [Co(II)(6)Dy(III)(aib)(6)(OH)(3)(NO(3))(2.9)(CH(3)OH)(4.92)(H(2)O)(1.18)](ClO(4))(2.6)(NO(3))(0.5)·2.5CH(3)OH·0.5H(2)O (10·2.5CH(3)OH·0.5H(2)O), [Co(II)(6)Ho(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)CN)(6)]·0.27[Ho(NO(3))(3)(ClO(4))(0.35)(H(2)O)(0.15)]·0.656[Co(NO(3))(3)(H(2)O)]·0.171(ClO(4)) (11), [Co(II)(6)Er(III)(aib)(6)(OH)(4)(NO(3))(2)(CH(3)CN)(2.5)(H(2)O)(3.5)](ClO(4))(3)·CH(3)CN·0.75H(2)O (12·CH(3)CN·0.75H(2)O), and [Co(II)(6)Tm(III)(aib)(6)(OH)(3)(NO(3))(3)(H(2)O)(6)]·1.48(ClO(4))·1.52(NO(3))·3H(2)O (13·3H(2)O). Complex 1 describes a distorted tetrahedral metallic cluster, while complex 2 can be considered to be a 2-D coordination polymer. Complexes 3-13 can all be regarded as metallo-cryptand encapsulated lanthanides in which the central lanthanide ion is captivated within a [Co(II)(6)] trigonal prism. dc and ac magnetic susceptibility studies have been carried out in the 2-300 K range for complexes 1, 3, 5, 7, 8, 10, 12, and 13, revealing the possibility of single molecule magnetism behavior for complex 10.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号