首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hexafluoroacetone (HFA) and O2 were photolyzed at 147.0 nm to investigate their use in chemical actinometry. The products, CO for the former and O3 in the latter case, were monitored. For accurate comparison, both of these substances were irradiated by a single light source with two identical reaction cells at 180° to each other. The light intensities I were measured under the same integrated as well as instantaneous photon flux based on ? and ?CO (quantum yield) as 2 and 1, respectively. Optimum conditions for maximum product yield were 5.0 torr HFA pressure and an O2 flow rate of 200 ml/min at 1 atm pressure for a 20-minute photolysis period. For light intensity variations between 1.09 × 1014 and 2.10 × 1015 photons absorbed/sec, the ratio I/IHFA was found to be unity. Calibration with the commonly used N2O actinometer for a ? value of 1.41 showed that I/IHFA and I/I are unity. Both HFA and O2 are suitable chemical actinometers at 147.0 nm with ?CO and ? of 1 and 2, respectively. The light intensity determination in the first case involves the measurement of only one product which is noncondensible at 77°K, whereas wet analysis for O3, the only product, in the second actinometer is necessary. Both of these determinations are quite simple and are preferable over product analysis in N2O actiometry, wherein N2 separation from other noncondensibles at 77°K is required.  相似文献   

2.
The partial enthalpies of liquid lead(II) oxide and of tetragonal germanium dioxide in lead germanate melts were measured calorimetrically at 900°C in the range 0 to 65 mole-% GeO2. The corresponding integral enthalpies of mixing were calculated. A relatively sharp dependence of the partial enthalpies on composition in the range from N = 0.3 to 0.45 probably is due to the formation of Ge2O.  相似文献   

3.
The possibility of a trigonal bipyramidal structure for [Cu(tet b)X]+ (blue) (where X=Cl, Br, I) is supported by the observation of two distinct d-d bands, which are assigned as and d, dxy→d and dxz, dyzd transitions respectively. The stability constants for the formation of [Cu(tet b)X]+ (blue) from [Cu(tet b)]z+ (blue) and X? were determined by spectrophotometric method at 25°, 35° and 45°C. The corresponding δH° and δS° values were obtained from the variations of the stability constants between 25° and 45°C  相似文献   

4.
Thermal Behaviour and Crystal Structure of YAl3Cl12 We determined the thermodynamic data of YAl3Cl12 ΔH = ?739.9 ± 3 kcal/mol and S = 136.1 ± 4 cal/K · mol by total pressure measurements and ΔH = ?739.1 ± 1.6 kcal/mol by solution calorimetry. Using DTA-investigations we established the phase diagram in the system AlCl3–YCl3. The crystal structure was refined on the basis of single crystal data (P31 12; Z = 3; a = 1 046.8(2); c = 1 562.3(3) pm).  相似文献   

5.
Reactions of oxygen atoms with ethylene, propene, and 2-butene were studied at room temperature under discharge flow conditions by resonance fluorescence spectroscopy of O and H atoms at pressures of 0.08 to 12 torr. The measured total rate constants of these reactions are K = (7.8 ± 0.6)·10?13cm3s?1,K = (4.3 ± 0.4) ± 10?12 cm3 s?1, K = (1.4 ± 0.4) · 10?11 cm3 s?1. The branching ratios of H atom elimination channels were measured for reactions of O atoms with ethylene and propene. No H-atom elimination was found for the reaction of O-atoms with 2-butene. A redistribution of reaction O + C2 channels with pressure was found. A mechanism of the O + C2 reaction was proposed and the possibility of its application to other olefins is discussed. On the basis of mechanism the pressure dependence of the total rate constant for reaction O + C2 was predicted and experimentally confirmed in the pressure range 0.08–1.46 torr.  相似文献   

6.
Published experimental studies concerning the determination of rate constants for the reaction F + H2 → HF + H are reviewed critically and conclusions are presented as to the most accurate results available. Based on these results, the recommended Arrhenius expression for the temperature range 190–376 K is k = (1.1 ± 0.1) × 10−10 exp |-(450 ± 50)/T| cm3 molecule−1 s−1, and the recommended value for the rate constant at 298 K is k = (2.43 ± 0.15) × 10−11 cm3 molecule−1 s−1. The recommended Arrhenius expression for the reaction F + D2 → DF + D, for the same temperature range, based on the recommended expression for k and accurate results for the kinetic isotope effect k/k is k = (1.06 ± 0.12) × 10×10 exp |-(635 ± 55)/T|cm3 molecule−1 s−1, and the recommended value for 298 K is k = (1.25 ± 0.10) × 10−11 cm3 molecule−1 s−1. © 1997 John Wiley & Sons, Inc. Int J Chem Kinet 29: 67–71, 1997.  相似文献   

7.
On the Thermal Behaviour of the Hydrogen Sulfates of Magnesium, Calcium, Strontium and Barium The thermal behaviour of the solvent-free crystals of alkaline earth hydrogen sulfates has been investigated. The DTA and TG curves of MII(HSO4)2 indicate a decomposition following the equation Thermal treatment of Mg(HSO4)2 in static gas atmosphere yields α-MgSO4 which is transformed to α-MgSO4 at higher temperature. Contrary to that in dynamic gas atmosphere direct decomposition to α-MgSO4 can be observed. T = 356°C, T = 204°C, T = 175°C, T = 156°C. The strong difference between the peak temperatures of Mg(HSO4)2 and the other alkaline earth hydrogen sulfates may be explained not only through the higher covalency of the bondings in the Mg compound but, especially, through differences of their structures. Whereas the hydrogen sulfates of Ca, Sr, and Ba contain chains of edge-linked MIIO8 polyhedra, in Mg(HSO4)2 exist isolated MgO6 octahedra.  相似文献   

8.
Acyl- and Alkylidenephosphanes. XXXIV. Methoxycarbonylphosphanes – Compounds closely related to the Phosphaalkyne P?C? O? Li(dme)2 Whereas methyl fluoroformate reacts with an equimolar amount of bis(tetrahydrofuran)lithium bis(trimethylsilyl)phosphanide ( 1a )
  • 1 Die Numerierung des betreffenden Lithiumphosphanids wird um das Suffix a erweitert, wenn von einer Röntgenstrukturanalyse her Gehalt an koordinierendem Solvens und Konstitution bekannt sind. Nach Möglichkeit beziehen wir uns dann im Text und in den Gleichungen auf derartige Spezies.
  • in 1,2-dimethoxyethane to give an inseparable mixture of tris(methoxycarbonyl)- ( 3 ) and tris(trimethylsilyl)phosphane, colourless crystals of lithium bis(methoxycarbonyl)phosphanide-1,2-dimethoxyethane (2/3) ( 4a ) are isolated in 84% yield from an analogous reaction with (1,2-dimethoxyethane- O,O ′)lithium phosphanide ( 2a ) in a molar ratio of 2:3. When, however, this ratio is changed to 1:2 or 1:1, the 31 P nmr spectra of those solutions show the formation of the by-product lithium methoxycarbonylphosphanide ( 10 ) or methoxycarbonylphosphane ( 6 ) respectively. The function of phosphanide 10 as an important intermediate in the synthesis of the phosphaalkyne P?C? O? Li(dme) 2 ( Ia ) [1] is discussed in detail. With trifluoroacetic acid in 1,2-dimethoxyethane the diacylphosphanide 4a is converted via a lithium-hydrogen exchange into bis(methoxycarbonyl)phosphane ( 9 ). Unlike 1,3-diketones and other diacylphosphanes [25], solutions of this compound do not show the presence of an enol tautomer even in very unpolar solvents. Tris(methoxycarbonyl)phosphane ( 3 ) obtained in a pure state from methyl chloroformate and phosphanide 2a , might decarboxylate to give the corresponding bis(methoxycarbonyl)methyl derivative 5 when the reaction mixture is worked up. 31P and characteristic 31C nmr data of these methoxycarbonylphosphanes and their related lithium phosphanides are compared with each other, the tris(phenoxycarbonyl) ( 7 ) and the bis(methoxycarbonyl)phenyl compound 8 being included. An x-ray structure determination (P1 ; a 715.8(2); b = 899.5(1); c = 1262.7(2)pm; α = 99.93(1)°; β = 96.01(1)°; γ = 104.81(1)° at ?100±3°C; Z = 1 dimer; wR2 = 0.152) shows lithium bis(methoxycarbonyl)phosphanide-1,2-dimethoxyethane (2/3) ( 4a ) to crystallize as a centrosymmetric neutral complex. Either lithium square pyramidally coordinated is bound to both carbonyl oxygen atoms of an almost planar bis(methoxy-carbonyl)phosphanide {Li? Oav. 197.4; O ‥ O 280.9} as well as of an 1,2-dimethoxyethane ligand (210.3; 261.6) and is brigded by another solvent molecule (204.0 pm). Further characteristic average bond lengths and angles are as follows: P$ \ddot - $C 179.5; C$ \ddot - $O 122.2; C? O 136.5; O? CH3 143.2 pm; C$ \ddot - $P$ \ddot - $C 98.8°; P$ \ddot - $C$ \ddot - $O 132.5°; P$ \ddot - $C? O 107.9°.  相似文献   

    9.
    The mechanism of the photolysis of formaldehyde was studied in experiments at 3130 Å and in the pressure range of 1–12 torr at 25°C. The experiments were designed to establish the quantum yields of the primary decomposition steps (1) and (2), CH2O + hν → H + HCO (1): CH2O + hν → H2 + CO (2), through the effects of added isobutene, trimethylsilane, and nitric oxide on ΦCO and Φ. The ratio ΦCO/Φ was found to be 1.01 ± 0.09(2σ) and (Φ + ΦCO)/2 = 1.10 ± 0.08 over the range of pressures and a 12-fold change in incident light intensity. Isobutene and nitric oxide additions reduced Φ to about the same limiting value, 0.32 ± 0.03 and 0.34 ± 0.04, respectively, but these added gases differed in their effects on ΦCO. With isobutene addition ΦCO/Φ reached a limiting value of 2.3; with NO addition ΦCO exceeded unity. The addition of small amounts of Me3SiH reduced Φ to 1.02 ± 0.08 and lowered ΦCO to 0.7. These findings were rationalized in terms of a mechanism in which the “nonscavengeable,” molecular hydrogen is formed in reaction (2) with ?2 = 0.32 ± 0.03, while the “free radical” hydrogen is formed in reaction (1) with ?1 = 0.68 ± 0.03. In the pure formaldehyde system these reactions are followed by (3)–(5): H + CH2O → H2 + HCO (3); 2HCO → CH2O + CO (4); 2HCO → H2 + 2CO (5). The data suggest k4/k5 ? 5.8. Isobutene reduced Φ by the reaction H + iso-C4H8 → C4H9 (20), and the results give k20/k3 ? 43 ± 4, in good agreement with the ratio of the reported values of the individual constants k3 and k20.  相似文献   

    10.
    The activation energy parameters for the reaction of PdX (X=Cl?, Br?) in aqueous halide acid solution with thiourea (tu) and selenourea (seu) have been determined. High rates of reaction parallel low enthalpies and appreciable negative entropy of activation. The rate law in each case simplifies to kobs=k[L] where L=tu or seu, and only ligand-dependent rate constants are observed at 25°C. The ligand-dependent rate constants for the first identifiable step in the PdCl + X system is (9.1±0.1) × 103 M?1 sec?1 and (4.5±0.1) × 104 M?1 sec?1 for X=tu and seu, respectively, while for the PdBr + X system it is (2.0±0.1) × 104 M?1 sec?1 and (9.0±0.1) × 104 M?1 sec?1 for X=tu and seu, respectively.  相似文献   

    11.
    Hydrogen abstraction from boron trimethyl has been studied using the abstracting radicals CF3 and CD3, from the photolysis of the corresponding ketones over the temperature range of 150° to 300°C. The following Arrhenius parameters were obtained: The difference EE in the case of BMe3 is considered due, in part, to polar effects. An exchange reaction is proposed for both CF3 and CD3 in collisions with BMe3: Radical combination of CF3 and CH2BMe2 leads to a hot molecule which undergoes a β-fluoro rearrangement elimination process, or a stabilized molecule which can thermally decompose:   相似文献   

    12.
    Energy-deformation characteristics for the primary T, S, and U conformational units of tie molecules were obtained from the analysis of data generated from a constrained minimization algorithm. Energy-deformation profiles (covering the range from compact equilibrium defect structures to the fully extended chain) are reported for the S0 and S1 members of the Sλ family and for the U00 member of the Umn family. Estimates of the energy content V0 and the elastic modulus E were obtained from the computed energy-deformation data in the vicinity of the equilibrium Structure—S0 → {60°, 180°, ?60°}, V = 1.7 kcal/mole, E = 60 kcal/cm3 [250 × 1010 dyn/cm2];S1 → {60°, 180°, 180°, 180°, ?60°}: V = 1.7 kcal/mole, E = 25 kcal/cm3 [100 × 1010 dyn/cm2]; and U00 → {60°, 180°, 60°, 180°, 60°}: V = 2.7 kcal/mole, E = 80 kcal/cm3 [340 × 1010 dyn/cm2]. Although the elastic modulus of the U00 unit is comparable to the elastic modulus of the fully extended chain, the highenergy content of this unit (V0 = 2.7 Kcal/mole) prohibits a significant population and thereby mitigates an appreciable reinforcing effect from this rigid unit. A model for a surrogate force constant is introduced to generalize the results from this study to any member of the Sλ or Umn family as well as any combination of Sλ and Umn units. This generalization provides a basis for estimating the deformation characteristics of tie molecules comprised of various populations of these primary conformational building blocks.  相似文献   

    13.
    The kinetics of the gas-phase thermal reaction between CF2(OF)2 and CO has been studied in a static system at temperatures ranging between 110 and 140°C. The only reaction products were CF2O and CO2, giving the following stoichiometry: The reaction is homogeneous. The rate is strictly second order in CF2(OF)2 and CO, and is not affected by the total pressure or by the presence of reaction products. Oxygen promotes a sensitized oxidation of CO and inhibits the formation of CF2O. The experimental results in the absence of oxygen can be explained by a chain mechanism similar to that proposed for the reaction between F2O and CO with an overall rate constant of From the experimental data obtained on the oxygen-inhibited reaction, the rate constant for the primary process can be calculated: The chain length v = 2.5 is independent of the temperature. Taking for collision diameters σ = 6 Å and σCO = 3.74 Å, a value α = 5.3 × 10?3 for the steric factor is obtained.  相似文献   

    14.
    The reaction of sulfur with primary or secondary amines and formaldehyde has been studied. A simple one step process for the preparation of thioformamides (RR′NCHS; R ? H, R′ ? CH3, C2H5; R ? R′ ? CH3, C2H5; R+R′ ? ? (CH2), ? (CH2), ? C2H4OC2H) and the amine salts of N, N-dialkyl-dithiocarbamic acids (R2NCS2 · H2NR2, R ? CH3, C2H5, C4H9; R2 ? ? (CH2), ? (CH2), ? C2H4OC2H) is reported. In addition, the isolation of diethylamidosulfoxylic acid, (C2H5)2NSOH · 1/2 H2O, the first derivative of a new class of compounds, is described. The physical properties and the 1H-NMR. spectra of the above mentioned compounds are given.  相似文献   

    15.
    Gel points in random polymerizations of the general type ΣiRA + ΣjRB in which A-groups react with A- and B-groups, and B-groups react only with A-groups are considered. (The symbols Σi and Σi signify that the A- and B-bearing reactants RA and RB can be mixtures of monomers of different functionalities, denoted generally as fai and fbj.) The usual case of A-groups reacting only with B-groups is a special case of the present theory. The effects of chemical kinetics, the competitive reaction of A- and B-groups, are separated from the generalized statistical condition for gelation. The former are used to define reaction curves and the latter, gelation curves. Both types of curve are represented as pa as a function of pb. For a given polymerization, gelation occurs when the reaction curve and the gelation curve intersect. When A-groups react only with B-groups, the gel points are those for the usual type of ΣiRA + ΣjRB polymerization, and, in the limit of A-groups only reacting with A-groups, the gel points are those for ΣiRA self polymerizations.  相似文献   

    16.
    The kinetics of the oxidation of formate, oxalate, and malonate by |NiIII(L1)|2+ (where HL1 = 15-amino-3-methyl-4,7,10,13-tetraazapentadec-3-en-2-one oxime) were carried out over the regions pH 3.0–5.75, 2.80–5.50, and 2.50–7.58, respectively, at constant ionic strength and temperature 40°C. All the reactions are overall second-order with first-order on both the oxidant and reductant. A general rate law is given as - d/dt|NiIII(L1)2+| = kobs|NiIII(L1)2+| = (kd + nks |R|)|NiIII(L1)2+|, where kd is the auto-decomposition rate constant of the complex, ks is the electron transfer rate constant, n is the stoichiometric factor, and R is either formate, oxalate, or malonate. The reactivity of all the reacting species of the reductants in solution were evaluated choosing suitable pH regions. The reactivity orders are: kHCOOH > k; k > k > k, and k > k < k for the oxidation of formate, oxalate, and malonate, respectively, and these trends were explained considering the effect of hydrogen bonded adduct formation and thermodynamic potential. © 1997 John Wiley & Sons, Inc. Int J Chem Kinet 29: 225–230, 1997.  相似文献   

    17.
    The diffusion coefficient of oxygen in poly(2-hydroxyethyl methacrylate) has been explicitly measured using an optical technique based on fluorescence quenching. This measurement represents the first explicit determination of D in PHEMA. A diffusion coefficient of oxygen in PHEMA of 1.36 × 10?7 cm2/s at 20°C was obtained from this measurement. This value is shown to agree well with permeability data for PHEMA, the free volume theory of diffusion, and with values of D that have been explicitly measured in other methacrylate hydrogels.  相似文献   

    18.
    Synthesis and Crystal-Structure of Na2Mn3O7 Single crystals of Na2Mn3O7 have been grown hydrothermally applying high oxygen pressure (p = 2 kbar). The new compound cystallizes triclinic; space group P1 ; a = 6.636(6) Å, b = 6.854(6) Å, c = 7.548(6) Å, α = 105.76(6)°, β = 106.86(6)°, γ = 111.60(6)°; Z = 2. The crystal structure has been solved and refined to R = 7.9% and Rw = 6.2% (diffractometer data, 1044 independent reflexions). The crystal structure consists of Mn3O72? anions with manganese coordinated octahedrally by oxygen. These layered anions are hold together by Na+ ions (coordination numbers 5 and 6).  相似文献   

    19.
    On the Structure of LiMIIMIIIF6 Compounds. New Compounds with MIII=IN and Ti LiMnIIInF6 compounds with MII = Mg, Mn, Co, Ni, Zn, Cd and Ca crystallize in the Na2SiF6 structure. The Ti(III) compound LiMgTiF6 has trirutile structure, LiMnTiF6 has Na2SiF6 and trirutile structure (H.-T. modification), LiCaTiF6 and LiCdTiF6 have Li2ZrF6 superstructure. With MII = Co, Ni and Zn solid solutions trirutile — MF2(rutile) could be only prepared. The lattice constants of all compounds are reported. For LiMnVF6 and LiFeGaF6 too dimorphism Na2SiF6 trirutile was observed. In the system LiNiCrF6 (trirutile) — LiMnCrF6 (Na2SiF6 structure) phase limits of both structures are determined in dependence on the ratio of ionic radii r/r. Magnetic data of the In compounds with MII = Co and Ni and of the Ti(III) compounds with MII = Mg, Zn, Mn, just as of α- and β-LiMnVF6 are also given. The three structures only exist if r reaches from 0.6 to 1.2 Å and r from 0.5 to 0.8 Å. The stability-fields are determined by the ratio of ionic radii r/rLi, r/rLi and r/r: trirutile 0.9–1.2, Na2SiF6 type 1.2–~1.4 and Li2ZrF6 superstructure >1.4. The dependence of rate of ionic radii is explained by the different sharing of MF6 octahedra.  相似文献   

    20.
    Kinetic solvent isotope effects (KSIE) were measured for the hydrolyses of acetals of benzaldehydes in aqueous solutions covering the pH (pD) range of 1–6. For p-methoxybenzaldehyde diethyl acetal, k/k = 1.8–3.1, depending on the procedure used to calculate the KSIE and on the pH (pD) range used as the basis for k(k). It is shown that this variation is an experimental artifact, and is a characteristic of KSIE measurements in general. It is recommended that k be calculated from a least-squares fit of data to the equation kobs = k[L+], and that the KSIE be reported as k/k. The limitation remains, however, that the KSIE measured for a variety of substances over quite different pH (pD) ranges may not be comparable to more than ?20%. The source of these observations is discussed in terms of small changes in the activity coefficient ratios (a specific salt effect), including the solvent isotope effect on the activity coefficient ratio [eq. (3)].  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号