首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
The phase velocity, the amplification rate and the critical Hall parameter are theoretically determined for ionization waves in a weakly ionized plasma streaming across a strong external magnetic field and bearing a current flowing perpendicular to both the magnetic field and the stream velocity. The investigations hold for seeded rare gases at any degree of seed ionization. The critical Hall parameter βc depends on the degree of ionization, the ionization energy and the temperatures of electron gas T0 and neutral gas Tg · βc is always greater than one, if 0 < T0Tg ? T0 holds. The three-dimensional treatment indicates the existence of waves with a nonvanishing wave vector component in the direction of the magnetic field. The influence of ionization waves on mean current density, mean Hall field intensity and mean electron temperature is determined up to second order terms in the relative fluctuations of the electron temperature. The amplification of ionization waves reduces the effective electric conductivity, the effective Hall parameter and the mean electron temperature compared to the undisturbed state. Similar results are also obtained for steady state homogeneous isotropic turbulence and a special case of axially symmetric turbulence. Furthermore, a component of the electric field in direction or in opposite direction to the magnetic field vector may be generated by non isotropic and non homogeneous turbulence.  相似文献   

2.
Influences of an axial magnetic field on the ionization wave and the positive column in rare gas discharges are studied experimentally. The upper critical current Ic for the appearance of ionization waves in the magnetic field B is newly found. As B is gradually increased, the value of Ie slightly increases from the Pupp's value and after passing a prominent maximum, finally become very small. In addition an anomaly takes place in the axial electric field E of the positive column stable for helical instabilities. With increasing the magnetic field the value of E goes through a weak maximum before decreasing. It is concluded that this anomaly, apparently incompatible with classical diffusion theory, is closely related to the appearance of ionization waves in the positive column.  相似文献   

3.
Equations describing the temporal dynamics of the order parameter ξ(t) of a metal-semiconductor phase transition and the density n(t) of electron-hole pairs in a Peierls system in a light field are obtained on the basis of the Lagrange equation for the phonon mode and the Liouville equation for the density matrix of the electronic subsystem. The equations obtained are analyzed for a stationary state (with adiabatically slow variation of the light intensity I) and for a transient process near the initial and final states of dynamic equilibrium (with the light field switched on abruptly). It is shown that for adiabatically slow growth of the intensity I up to a certain critical value I c the band gap of the electronic spectrum decreases but the semiconductor phase of the Peierls system remains stable. For I>I c the stationary semiconductor state (ξ≠0) becomes unstable. When the light is switched on abruptly, the deviation of the system parameters from the initial values is described by an exponential law with a characteristic reciprocal of the rise time of the process linearly dependent on the irradiation intensity I. As a new position of equilibrium is approached, three qualitatively different regimes of behavior of the order parameter ξ and density n are possible. For low intensities I(I< I 1) a purely relaxational aperiodic process occurs. For intermediate intensities I(I 1<I<I c) damped oscillations of ξ and n are observed near a new stationary semiconductor state with a smaller band gap. For I>I c the stationary semiconductor state with ξ≠0 is absent. The experimental data on the irradiation of a vanadium dioxide film with a powerful laser pulse is interpreted on the basis of the theory developed. Zh. éksp. Teor. Fiz. 116, 2154–2175 (December 1999)  相似文献   

4.
激光靶等离子体受激Raman散射   总被引:3,自引:0,他引:3       下载免费PDF全文
用我们研制的一维半电磁粒子模拟程序数值模拟了神光12#激光器(λL=1.053μm,τ=850ps,IL=3×1014—3×1015W/cm2打靶的受激Raman散射。得到了散射光波、静电(Langmuir)波线性增长和非线性饱和的细致图象、热电子和超热电子分布函数随时间的发展以及超热电子的温度和份额。通过对散射光谱的分析得到晕区电子温度约为1.4—2.5keV,还得到靶等离 关键词:  相似文献   

5.
Zakharov–Kuznetsov–Burgers (ZKB) equation is derived for electron acoustic shock waves in magnetized e–p–i plasma. In the present model, magnetized plasma containing two electron population with kappa distributed positrons has been considered. The propagation characteristics of three dimensional electron acoustic (EA) shock waves have been studied under the influence of magnetic field. Our present plasma model supports the negative potential shocks. Combined action of dissipation (η), superthermality (κ), concentration of positrons (β), temperature ratio of cold electrons to positrons (σ), and magnetic field (ωc) significantly modify the properties of EA shock waves. The width and amplitude of the shock structures are modified by various physical parameters. It is found that shock wave width decreases with increase in β, η0, and ωc whereas it becomes wider for κ and σ. Further, potential of the shock wave decreases as one departs away from superthermal distribution.  相似文献   

6.
Stationary solutions of the coupled equations for high frequency transverse waves in a plasma and for the low frequency ion motion (Te?Ti) are investigated numerically. The use of the nonlinear hydrodynamic equations instead of the linear wave equation for ion acoustic waves allows to look for solutions without restrictions of the Mach number M = V/cs (V group velocity, cs ion acoustic velocity) and the ratio ω/ωpe (ω frequency of the HF-field, ωpe electron plasma frequency at the undisturbed region). In particular, supersonic soliton-like solutions with n/no > 1 were found. Dispersion effects due to charge separation are not included.  相似文献   

7.
A new model of electronic vortices in plasma is studied. The model assumes that the profile of the Lagrangian invariant I, equal to the ratio I=Ω/n of the electronic vorticity to the electron density, is given. The proposed approach takes into account the magnetic Debye scale r B ≃B/4πen, which leads to breakdown of plasma quasineutrality. It is shown that the Abrikosov singular model cannot be used to describe electron vortices in plasmas because of the fundamental limitation on the electron vorticity on the axis of a vortex in a plasma. Analysis of the equations shows that in the model considered for the electronic vorticity, the total magnetic flux decreases when the size r 0 of the region in which I≠0 becomes less than cpepe is the electron plasma frequency). For ω pe r 0/c≪1, an electronic vortex is formed in which the magnetic flux decreases as r 0 2 and the inertial component predominates in the electronic vorticity. The structure arising as ω pe r 0/c⇒0 is a narrow “hole” in the electron density, which can be identified from the spectrum of electromagnetic waves in this region. Pis’ma Zh. éksp. Teor. Fiz. 67, No. 7, 461–466 (10 April 1998)  相似文献   

8.
In this study, a film formation process from surfactant-free polystyrene (PS) latex particles is reported. Steady state fluorescence (SSF) and photon transmission (UVV) techniques were used to study the evolution of film formation. The latex films were prepared from pyrene (P)-labeled PS particles at room temperature and annealed at time intervals of 2.5?min above the glass transition temperature (T g) of PS. During the annealing processes, the transparency of the film changed considerably. Fluorescence intensity (I 0P) from P was measured after each annealing step to monitor the stages of film formation. Evolution of transparency of latex films were monitored by using photon transmission intensity, I tr. A drastic increase in I tr and I 0P above the critical annealing times, t r and t c were attributed, respectively to percolation behavior of PS material from one side to the other side of the latex film. Critical exponents, β of percolation clusters were measured and found to be around 0.35 and 0.25 for I tr and I 0P measurements, respectively.  相似文献   

9.
The effect of higher-order nonlinearity on dust acoustic solitary waves is studied taking into account the dust-charge variation. The model of charge fluctuation, taken here, is of the formI e+I i=0,I e andI i being the electronic and ionic currents. The dust charge is determined self consistently from the current-balance equation. It is found that the higher-order correction modifies the amplitude and width of the dust acoustic solitary waves. The effect of dust-charge streaming is also discussed.  相似文献   

10.
11.
Standing cyclotron harmonic waves below the second harmonic are observed using the noise radiation of a mercury discharge tube at 1465 MHz. From the positions of the Buchsbaum-Hasegawa resonances the density profile and the electron temperature are derived, these parameters agree quite well with the behaviour of the collision-free, magnetized plasma column. A onedimensional model applicable to our waveguide geometry is developed taking into account linear excitation of cyclotron harmonic waves by a quasistationary external field in a bounded plasma. Absorption and excitation are controlled by the scale length L1 at the hybrid point and a coupling length lc, introduced by Eq. (20); the electron gyration radius rc, scale length L1, coupling length lc, and slab thickness 2a obeying the relation rc?lc?L1?2a. The main absorption is caused by enhanced collisional damping at the upper hybrid region and only a small fraction being dissipated in the wave mode, though its field strength is large compared with that at the plasma boundary (EW/E(a) ≈ 6). An estimation of the mean field strength within the coupling region shows, that such a low power as 1 mW/cm2 absorbed in the hybrid region may produce fieldstrength exceeding the typical threshold values for non-linear excitation mechanism.  相似文献   

12.
A new approach to magnetic field profiling inside a Josephson contact is suggested. Its essence consists in analyzing continuous variation of a current configuration leading to a decrease in the Gibbs potential. With this approach, one can find a configuration into which the Meissner state turns when an external field slightly exceeds the upper boundary of the Meissner regime and trace the evolution of this configuration with increasing field. Calculations show that there exists critical value I c of the pinning parameter in the range 0.95–1.00. This critical value separates two possible conditions of magnetic field penetration into the contact. At I > I c, a near-boundary current configuration completely compensating for the external field inside the contact arises irrespective of the external field strength. At I < I c, such a situation is observed only until the external field strength exceeds certain value H max. Higher fields penetrate into the contact indefinitely deep. In nearboundary configurations, the magnetic field drops with increasing depth almost linearly. Its slope k has rational values, which remain constant within finite intervals of I. As I goes beyond a given interval, k rises stepwise and takes on another rational value. When an external magnetic field is switched on adiabatically, configurations with a maximal growth rate of the magnetic field are observed.  相似文献   

13.
A study of low energetic resonant Raman scattering of (BEDT-TTF)2I3 superconducors was performed. The vanishing of phonon bands accompanied by a decrease of the electronic background was observed belowT c . We propose a theoretical explanation for this novel effect in terms of the Balseiro-Falicov model of phonon-superconducting amplitude mode interaction.  相似文献   

14.
W. Krech 《Annalen der Physik》1982,494(2):117-127
Synchronization Effects in a Linear Array of N Josephson Junctions Within the frame of the RSJ model we investigate the synchronization of the oscillations in a linear array of N identical Josephson junctions shunted by an electromagnetic resonator. Using an adiabatic approximation to the first order of the parameter IcI the reduced equations of the slowly varying phases are derived. These equations allow the detailed investigation of all the stationary states of the system. Only the coherent state in the inductive regime and the radiationless state in the capacitive regime are found to be stable. Including noise effects we discuss the order parameter concept for the resonator current in the case N ? 1.  相似文献   

15.
A relativistic theory is developed to study the growth of weak discontinuities propagating in a chemically reacting fluid mixture. The velocity of propagation is determined, which fully agrees with classical results in the nonrelativistic limit. The growth equation for the wave propagation in relativistic fluid flows with nonequilibrium effects is obtained and solved. The wave amplitude is determined as a function of time. The relativistic and relaxation effects on the global behavior of the wave amplitude are studied analytically. It is concluded that if the wave is of a compressive nature and its initial amplitude is greater than a critical value, then the discontinuity grows until it develops into a shock wave after a finite critical timet c . But on the other hand if the initial wave amplitude is less than the critical one, the wave decays and damps out ultimately. It is shown that both relativistic and relaxation effects help in stabilizing the wave propagation by increasing the critical timet c for the breakdown of the wave due to nonlinear steepening.  相似文献   

16.
A Gaussian whistler pulse is shown to cause ponderomotive acceleration of electrons in a plasma when the peak whistler amplitude exceeds a threshold value and the whistler frequency is greater than half the cyclotron frequency, ω>ω c /2. The threshold amplitude decreases with the ratio of plasma frequency to electron cyclotron frequency, ω p /ω c . However, above the threshold amplitude, the acceleration energy decreases with ω p /ω c . The electrons gain velocities about twice the group velocity of the whistler.  相似文献   

17.
In this paper, we present a new method based on real-coded Genetic Algorithm (GA) with elitist model for optimal design of a reconfigurable symmetrical dual-beam uniformly spaced linear isotropic antenna array with phase-only control of quantized phase shifters. The problem is to find a common amplitude distribution that will generate a pencil beam with zero phases and a flat-top beam with discrete phases of a six-bit discrete phase shifter, without or with pre-fixing the value of dynamic range ratio (|I max/I min|) of excitation current amplitude distribution equal to or less than five.  相似文献   

18.
Obliquely propagating electron acoustic shock waves in plasma with stationary ions, cold and superthermal hot electrons are investigated in magnetized plasma. Employing reductive perturbation method, Korteweg-de Vries-Burgers equation (KdVB) is derived in the small amplitude approximation limit. The analytical and numerical calculations of the KdVB equation show the variation of shock waves structure (amplitude, velocity, and width) with different plasma parameters. Particle density (α), superthermal parameter (κ), electron temperature ratio (??), kinetic viscosity (η0), obliqueness (kz), and strength of magnetic field (ωc) significantly modify the properties of the shock waves structures. The present investigation is useful to understand dissipative structures observed in space or laboratory plasma where multielectrons population with superthermal electrons are prevalent.  相似文献   

19.
We have reported SmBa2Cu3Oy (SmBCO) films on single crystalline substrates prepared by low-temperature growth (LTG) technique. The LTG-SmBCO films showed high critical current densities in magnetic fields compared with conventional SmBCO films prepared by pulsed laser deposition (PLD) method. In this study, to enhance critical current (Ic) in magnetic field, we fabricated thick LTG-SmBCO films on metal substrates with ion-beam assisted deposition (IBAD)-MgO buffer and estimated the Ic and Jc in magnetic fields.All the SmBCO films showed c-axis orientation and cube-on-cube in-plane texture. Tc of the LTG-SmBCO films were 93.1–93.4 K. Jc and Ic of a 0.5 μm-thick SmBCO film were 3.0 MA/cm2 and 150 A/cm-width at 77 K in self-field, respectively. Those of a 2.0 μm-thick film were 1.6 MA/cm2 and 284 A/cm-width respectively. Although Ic increased with the film thickness increasing up to 2 μm, the Ic tended to be saturated in 300 A/cm-width. From a cross sectional TEM image of the SmBCO film, we recognized a-axis oriented grains and 45° grains and Cu–O precipitates. Because these undesired grains form dead layers, Ic saturated above a certain thickness. We achieved that Ic in magnetic fields of the LTG-SmBCO films with a thickness of 2.0 μm were 88 A/cm-width at 1 T and 28 A/cm-width at 3 T.  相似文献   

20.
Summary It is shown that the behaviour of the temperature dependence of the critical current in polycrystalline thin films of high-T c superconductors depends crucially on the assumption made concerning the nature of the intergranular material. The usual assumption of a superconductor-insulator-superconductor (=SIS) ?sandwich? between each grain leads to a crossover fromI c∼(1−T/T c) toI c∼(1−T/T c)3/2, for temperatures nearT c (whereI c is the critical current,T the absolute temperature, andT c the superconducting transition temperature). Instead, for a superconductor-normal metal-superconductor (=SNS) sandwich the dependenceI c∼(1−T/T c)2 is found for all temperatures. Consideration is given to the effect of self-magnetic field on the analysis. The comparison between expressions for continuous and granular systems is extended. Due to the relevance of its scientific content, this paper has been given priority by the Journal Direction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号