首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper describes an examination of the dosimetric properties of natural quartz grains extracted from ancient fired materials. Eleven samples of different origin were tested for their TL and GLSL (green light stimulated luminescence) sensitivities within the mGy dose range. Very promising results were obtained showing the possibility of measuring the doses of around 10 mGy with 1% precision using GLSL or TL and using the single aliqout technique for natural quartz as a dosimeter. The lowest detectable dose was estimated to be lower than 500 μGy. The results obtained indicate that natural quartz grains from selected materials could be used for the dosimetry of environmental gamma radiation for the purposes of paleodosimetric dating methods as well as for accident dosimetry.  相似文献   

2.
It has previously been observed that laboratory-generated quartz optically stimulated luminescence (OSL) signals from different samples have similar dose response curves (DRCs) after they are normalized using a test dose. It therefore seems likely that growth of the normalized signal due to natural irradiation of quartz may also follow a general dose response curve. The existence of such a curve is investigated by constructing a natural DRC from the test dose-normalized natural OSL signals of seven samples from the Luochuan section of the Chinese Loess Plateau. The same aliquots are then used to build single aliquot regenerative (SAR) DRCs, making it possible to compare the natural and laboratory constructed curves. Two main differences are observed. Firstly, the laboratory-generated DRCs are best fitted with double saturating exponential functions whereas the natural DRC is equally well fitted with a single saturating function. Secondly, in the laboratory-generated DRCs the normalized OSL signal continues to increase at high laboratory doses (>500 Gy), whereas no growth is seen at these doses in the equivalent natural DRC. These differences between natural- and laboratory-generated DRCs are still apparent even if data are manipulated to isolate the fast component, or if a sensitivity corrected multiple aliquot regenerative (SC-MAR) dose procedure is used. This suggests that the observed differences are not due to the influence of different components or inter-regenerative dose cycle sensitivity changes. The divergence between the natural- and laboratory-generated DRC means that the current maximum limit of quartz OSL dating at the Luochuan section is 150 Gy, as De estimates above this value are likely to be underestimations.  相似文献   

3.
Previous SAR-OSL dating studies using quartz extracted from Romanian and Serbian loess samples report SAR-OSL dose–response curves on fine grained (4–11 μm) quartz that grow to much higher doses compared to those of coarse-grained (63–90, 90–125, 125–180 μm) quartz. Furthermore, quartz SAR-OSL laboratory dose response curves do not reflect the growth of the OSL signal in nature. A main difference in coarse- and fine-grained quartz dating lies in the alpha irradiation history, but the effect of mixed alpha-beta fields has so far received little attention. In the present study we investigate whether the alpha dose experienced by fine grains over geological cycles of irradiation and bleaching may have an effect on the saturation characteristics of the laboratory dose response. By applying time resolved optically stimulated luminescence we confirm that the OSL signals induced in quartz by alpha and beta radiation follow the same recombination path. We also show that a mixed alpha-beta dose response reproduces the beta dose response only up to about 800 Gy. Assuming an a-value of 0.04 we have shown that laboratory alpha and beta dose response curves overlap up to effective alpha doses of ∼50 Gy. Based on these results, we conclude that exposure of fine grains to alpha radiation during burial and transport cycles prior to deposition, as well exposure to the mixed radiation field experienced during burial are not responsible for the age discrepancies previously reported on fine and coarse grained quartz extracted from Romanian and Serbian loess.  相似文献   

4.
Luminescence dating methods have been used to obtain reliable age estimates for quartz sediments deposited within the last 500 ka, but it has proven difficult to extend the age range much beyond this limit. Here we report the results of a study of individual quartz grains from Australian sedimentary deposits that range in age from 250 to 950 ka. A small number of the grains examined are strongly luminescent and saturate at unusually high doses. These ‘supergrains’ may permit reliable age determination to 1 Ma, and possibly beyond. Some other grains are in, or close to, dose-saturation, so that only minimum age estimates may be obtained. Most of the grains examined are very weakly luminescent and have palaeodoses much less than expected, while the palaeodoses of some grains cannot be estimated because of anomalous dose–response characteristics. We offer some possible explanations for the behaviour of aberrant grains.  相似文献   

5.
Archaeological mortars are more convenient and much more representative for the chronology of buildings than brick or wood constructions that can be re-used from older buildings. Before dating unknown samples of mortars, further investigation of OSL from mortars is required and the most efficient methodology needs to be established. In this study we compared the ages obtained by OSL dating of quartz extracted from mortars of the Roman amphitheatre Palais-Gallien in Bordeaux with independent age information.Resetting of the OSL signal occurred during the preparation of mortar when grains of sand (quartz) were extracted and mixed with lime and water. The mortar was subsequently hidden from light by embedding within the structure which is the event to be dated.Various factors contribute to uncertainties in the age determination. The frequency of measured equivalent doses reveals a large scattering. Optical bleaching of certain grains can be partial due to the short duration of the exposure to light. We worked with the single grain technique in order to find and select the grains that were sufficiently exposed to daylight. To determine the average equivalent dose, we tried three different approaches: a calculation of an arithmetic mean and one following either the central age model or the 3-parameter minimum age model, the latter turned out to be the only relevant way to evaluate the experimental data. The proportion of grains included in the calculation of the average equivalent dose represents 2.7–4.7 % of the overall analysed grains. The results obtained for the three out of four samples are approaching the expected age, however, the minimum doses and the corresponding ages are significantly over-estimated in case of two samples.The studied material is very coarse, which causes heterogeneity of irradiation at the single grain scale, and contributes to a dispersion of equivalent doses. Different analytical methods (scanning electron microscopy with energy dispersive X-ray spectroscopy cartography, Beta-radiography imaging, inductively coupled plasma mass spectrometry) were employed to demonstrate the presence of this phenomenon.Despite the extremely large proportion of high equivalent doses in equivalent dose distributions, there is an apparent presence of well-bleached grains at the beginning of equivalent dose distributions. The study shows the potential of dating mortars by single grain OSL.  相似文献   

6.
When using a single-aliquot regenerative dose (SAR) protocol for luminescence dating of sedimentary quartz grains, the fundamental assumption is that the sensitivity of the optically stimulated luminescence (OSL) produced by the regenerative doses can be monitored by their following test dose OSL response. Using well-bleached coarse quartz grains, OSL production in a SAR protocol was studied in detail when dose response curves were constructed using both single and multiple aliquot regenerative dose procedures. During application of the SAR protocol, two preheats are applied, each ahead of an OSL measurement that is produced by the regenerative dose and test dose, respectively. It is shown that sensitivity changes caused by heating were well corrected for using the OSL response to the test dose. However, these preheats are shown to result in thermally stimulated OSL signals that contribute both to the OSL response from the regenerative doses used to construct the dose response curve and to the OSL response from the test dose used to monitor OSL sensitivity changes as the quartz grains are repeatedly measured. A simple test is proposed to identify the contribution of the latter signal.  相似文献   

7.
Fast component dominated quartz single aliquot regenerative dose optically stimulated luminescence (SAR-OSL) dose response curves that display continuing growth at high doses are increasingly reported in literature. This behaviour would result in higher equivalent doses being obtained. Here we document the characteristics of OSL signals from fine (4–11 μm) and coarse (63–90 μm) quartz extracted from Romanian loess that display such behaviour. For very high doses (>1 kGy up to 5–15 kGy) the data could be closely fitted to a double saturating exponential regression model. Nonetheless, the saturation charcteristics of these fine and coarse quartz grains are very different, with average saturation chracteristic doses of D01 ≈ 175 Gy and D02 ≈ 1800 Gy in the case of the fine material, while in the case of the coarse material values of D01 ≈ 55 Gy and D02 ≈ 600 Gy have been obtained. Our results imply a hitherto unexplained mechanism in OSL production at high doses and question the reliability of obtaining SAR-OSL equivalent doses in the high dose region when a second function is needed to describe the dose response.  相似文献   

8.
When dating older sedimentary deposits using quartz, there are no unambiguous methods for identifying the presence of incomplete bleaching. Current statistical analysis of dose distributions depends entirely on the assumption that incomplete bleaching and mixing are the main causes of any excess dispersion in the distribution; the only existing way to test this assumption is using independent age control. Here we suggest a new approach to this question, based on the differential bleaching rates of quartz and feldspar luminescence signals. We first present data that confirm the differences in relative bleaching rates of quartz optically stimulated luminescence (OSL) and feldspar luminescence stimulated at 50 °C by infrared light (IR50) and feldspar luminescence stimulated at 290 °C by infrared light after a stimulation at 50 °C (pIRIR290), and use recently deposited samples to determine the likely significance of the difficult-to-bleach residual feldspar signals in non-aeolian samples. For a set of mainly Late Pleistocene non-aeolian sediments, large aliquot quartz doses are then used to predict feldspar doses (based on a knowledge of the sample dose rates). The differences between observed and predicted feldspar doses as a function of the quartz dose, combined with a conservative assumption concerning the relative feldspar and quartz residual signals after natural bleaching prior to deposition, are used to identify those samples for which the quartz is very likely to be well bleached (20 out of 24). Two of these apparently well-bleached samples are then examined using single-grain quartz dose distributions; one of these is consistent with the well-bleached hypothesis, and one indicates poor bleaching or a multi-component mixture. However, independent age control makes it clear that the large aliquot data are more likely to be correct. We conclude that a comparison of quartz and feldspar doses provides a useful independent method for identifying well-bleached quartz samples, and that it is unwise to apply statistical models to dose distributions without clear evidence for the physical origins of the distributions.  相似文献   

9.
Optically stimulated luminescence (OSL) measurements of quartz are widely used to measure equivalent dose (De). At radiation doses above ~100 Gy, saturation of traps results in a decrease in the rate of growth of the OSL signal, and this makes calculation of De increasingly difficult. A series of dose recovery experiments was undertaken using single grains of quartz from Kalambo Falls, Zambia to explore saturation of single grains. When the OSL signal from many grains is averaged, the characteristic dose (D0) is 47 Gy, typical of published values for quartz. However, D0 for individual grains varies from ~10 to 100 Gy. Doses up to two times the average D0 could be accurately recovered, but above this dose the De became increasingly underestimated. Overdispersion for this type of experiment should be zero, but was observed in all data sets; furthermore the value of overdispersion increased with De. An additional acceptance criterion, the Fast Ratio, is suggested for single grain OSL analysis. This criterion assesses the relative contribution of the fast component of the OSL signal. Including this as an additional acceptance criterion leads to an improved precision, with overdispersion reduced to zero, and improved accuracy in dose recovery at high doses.  相似文献   

10.
Luminescence dating of individual sand-sized grains of quartz is a well-established technique in Quaternary geochronology, but the most ubiquitous mineral on the surface of the Earth—feldspar—has received much less attention at the single-grain level. In this study, we estimated single-grain equivalent dose values and infrared stimulated luminescence (IRSL) ages for K-rich feldspar (KF) grains from a fluvial sample underlying Youngest Toba Tuff (YTT) deposits in north-central India, and compared these ages (corrected for anomalous fading) with those obtained from individual grains of quartz from the same sample. Both minerals have broadly similar single-grain age distributions, but both are greatly overdispersed and most grains have ages substantially younger than the expected age of the YTT deposit (~74 ka). Almost half (45%) of KF grains used for age calculation have fading rates statistically consistent with zero, but the age distribution of these grains is as dispersed as that of the entire population. We obtained a similar distribution of ages calculated for 51 grains using their individually measured internal K contents, which exhibited only minor grain-to-grain variation. Given the lack of dependency of single-grain ages on the measured fading rates and internal K contents, and the overall adequacy of bleaching of grains collected from a sandbar in the modern river channel, we consider the spread in ages is most likely due to mixing, at the time of deposition and after the YTT event, of potentially well-bleached fluvially-transported sediments with older grains derived from slumping of riverbank deposits. Some spread may also be due to natural variations in the IRSL properties of individual KF grains.  相似文献   

11.
The infinite matrix assumption is commonly used to derive dose rates in the field of paleodosimetric dating methods. The update of nuclear data allowed calculating new dose rate conversion factors and attenuation factors for taking account of grain size. The relevance of the infinite matrix assumption was found to be limited to specific cases and a discussion of potential errors in estimating dose rates to natural dosimeters in sedimentary media is proposed. A new set of geometric features is shown to be of paramount importance for estimating dose rates in sedimentary media. To quantify these effects, Monte Carlo modelling was applied and the architecture of the programmes is described. It is also shown that proper characterization of sediment samples, coupled to the modelling of radioactivity in these sediments may provide more accurate dose rates to quartz grains, down to the single grain scale.  相似文献   

12.
Despite the general expectation that optically stimulated luminescence (OSL) growth should be described by a simple saturating exponential function, an additional high dose component is often reported in the dose response of quartz. Although often reported as linear, it appears that this response is the early expression of a second saturating exponential. While some studies using equivalent doses that fall in this high dose region have produced ages that correlate well with independent dating, others report that it results in unreliable age determinations. Two fine grain sedimentary quartz samples that display such a response were used to investigate the origin of this additional high dose component: three experiments were conducted to examine their dose–response up to >1000 Gy. The high dose rates provided by laboratory irradiation were found not to induce a sensitivity change in the response to a subsequent test dose, with the latter not being significantly different from those generated following naturally acquired doses. The relative percentage contributions of the fast and medium OSL components remained fixed throughout the dose–response curve, suggesting that the electron traps that give rise to the initial OSL do not change with dose. An attempt was made to investigate a change in luminescence centre recombination probability by monitoring the depletion of the ‘325 °C’ thermoluminescence (TL) during the optical stimulation that would result in depletion of the OSL signal. The emissions measured through both the conventional ultraviolet (UV), and a longer wavelength violet/blue (VB) window, displayed similar relative growth with dose, although it was not possible to resolve the origin of the VB emissions. No evidence was found to indicate whether the additional component at high doses occurs naturally or is a product of laboratory treatment. However, it appears that these samples display an increased sensitivity of quartz OSL to high doses that is not recorded by the sensitivity to a subsequent test dose, and which results in a change in the sensitivity-corrected dose–response curve.  相似文献   

13.
Optically stimulated luminescence (OSL) measurements have been made of over 3000 sand-sized grains of quartz. Analysis at this scale highlights the variability in the luminescence sensitivity and the dose saturation characteristics of individual quartz grains. Using a new instrument capable of measuring single grains it is feasible to routinely measure the equivalent dose from many hundreds of grains from each sample. Analysis of such datasets requires assessment of the uncertainties on each equivalent dose since these may vary significantly. This paper assesses the significance of signal intensity, dose saturation characteristics and instrument uncertainty in equivalent dose calculation.  相似文献   

14.
For luminescence dating to be an accurate absolute dating technique it is very important that we are able to deliver absolutely known radiation doses in the laboratory. This is normally done using a radiation source (alpha, beta, X-ray) calibrated against an absolutely known reference source. Many laboratories have used the various different batches of Risø calibration quartz for the calibration of beta and X-ray sources, but these have been largely undescribed. Here we describe in detail the preparation and luminescence characteristics of a new quartz standard, based on a North Sea beach sand collected from south-western Denmark (Rømø). Two grain sizes (4–11 μm and 180–250 μm) have been examined in detail. These were pre-treated (annealed, dosed and annealed again) to sensitise and stabilise the luminescence signals before being given an absolutely known gamma dose from a point 137Cs source in scatter-free geometry. The luminescence characteristics are described; the very intense blue-light stimulated signal is dominated by the fast OSL component and the IR-stimulated signal is negligible. The material is shown to be suitable for measurement using SAR, and the dose recovery ratio is indistinguishable from unity with a standard deviation of <2% for multi-grain aliquots. The material is also shown to be suitable for single-grain calibration, with >80% of the grains giving a useful signal. Although there is an unexplained dispersion in our calibration data of ∼3% (which we cannot attribute to instrument variability), we nevertheless conclude that this material is very suitable for transferring absolute known doses from a standardised gamma source to in-built irradiation sources.  相似文献   

15.
We study the segregation of granular mixtures in two-dimensional silos using a recently proposed set of coupled equations for surface flows of grains. We study the thick flow regime, where the grains are segregated in the rolling phase. We incorporate this dynamical segregation process, called kinematic sieving, free-surface segregation or percolation, into the theoretical formalism and calculate the profiles of the rolling species and the concentration of grains in the bulk in the steady state. Our solution shows the segregation of the mixture with the large grains being found at the bottom of the pile in qualitative agreement with experiments. Received: 6 July 1998 / Revised and Accepted: 13 August 1998  相似文献   

16.
Narrow spectrum (blue-green) laboratory partial bleaching of aliquots of natural sedimentary quartz has been shown to have a significant effect on equivalent dose (measured using a single aliquot procedure) calculated as a function of measurement time (De(t)). A simple model, based on empirical data, is presented in which the effects of partial bleaching on De(t) are predicted, taking into account the influences of pre- and post-burial doses. The model is applied to the case of heterogeneous populations of partially bleached single grains with various ranges of residual doses. Modelling shows that under realistic conditions, De histogram plots are unable to distinguish between samples having age overestimates and those with correct ages, whereas the proposed DeZ plot is able to make this distinction. Furthermore, modelling shows that DeZ plots can identify sub-populations of grains/aliquots that show most evidence of full bleaching, which can then be used to estimate a correct mean De value.  相似文献   

17.
We present the generalization of the minimal model for surface flows of granular mixtures, proposed by Boutreux and de Gennes [J. Phys. I France 6, 1295 (1996)]. The minimal model was valid for grains differing only in their surface properties. The present model also takes into account differences in the size of the grains. We apply the model to study segregation in two-dimensional silos of mixtures of grains differing in size and/or surface properties. When the difference in size is small, the model predicts that a continuous segregation appears in the static phase during the filling of a silo. When the difference in size is wide, we take into account the segregation of the grains in the rolling phase, and the model predicts complete segregation and stratification in agreement with experimental observations. Received 9 September 1998 and Received in final form 4 November 1998  相似文献   

18.
The slow component of quartz OSL exhibits a high thermal stability, and, in many of the samples studied, a high dose saturation level (several hundreds or, even thousands, of Grays). These properties suggest that the slow component has potential as a long-range dating tool. Initial attempts have been made to obtain equivalent doses for a number of sedimentary samples. Single- and multiple-aliquot techniques were modified for use with the slow component. The results indicate that there is a good potential for sediment dating, particularly for samples of significant age. Experiments concerning the optical resetting of the slow component suggest that, given its slow optical depletion rate, dating may be restricted to aeolian sediments.  相似文献   

19.
《Radiation measurements》2009,44(2):149-157
In this study, we applied optically stimulated luminescence (OSL) dating to two fine grain sediment samples collected at Jeongokri, Korea. A single aliquot regenerative dose (SAR) procedure was applied to both polymineral grains and to chemically isolated (H2SiF6) quartz grains of 4–11 μm diameter. For polymineral fine grains, the OSL IR depletion ratio and the equivalent dose (De) plateau test appear to be equally sensitive indicators of appropriate IR stimulation time for use in the ‘double SAR’ protocol. Additionally, the OSL IR depletion ratio test gives an indication of the relative mineral composition of the samples, hence providing an assessment of the likelihood of obtaining a quartz-dominated [post-IR] OSL signal. Use of higher preheat temperatures would assist in thermally eroding the non-quartz component of the [post-IR] OSL signal from polyminerals. For the quartz fine grains, data from both natural De determinations and laboratory dose recovery tests are required to identify the appropriate preheat temperatures for dating, due to problems of thermal transfer. This phenomenon is particularly exaggerated for these samples due to the large De values (≥350 Gy) and hence low slope of the dose–response curve. The double SAR method cannot be applied ubiquitously, even after careful and rigorous study of one sample from a section. Quartz OSL dating using a range of preheat temperatures is suggested to be the most suitable method for OSL dating of fine grain sediments.  相似文献   

20.
The use of single grain quartz OSL dating has become widespread over the past decade, particularly with application to samples likely to have been incompletely bleached before burial. By reducing the aliquot size to a single grain the probability of identifying the grain population most likely to have been well-bleached at deposition is maximised and thus the accuracy with which the equivalent dose can be determined is – at least in principle – improved.However, analysis of single grain dose distributions requires knowledge of the dispersion of the well-bleached part of the dose distribution. This can be estimated by measurement of a suitable analogue, e.g. a well-bleached aeolian sample, but this requires such an analogue to be available, and in addition the assumptions that the sample is in fact a) well-bleached, and b) has a similar dose rate heterogeneity to the fossil deposit. Finally, it is an implicit assumption in such analysis that any over-dispersion is not significantly dose dependent.In this study we have undertaken laboratory investigations of the dose dependency of over-dispersion using a well-bleached modern sample with an average measured dose of 36 ± 3 mGy. This sample was prepared as heated (750 °C for 1 h), bleached and untreated portions which were then given uniform gamma doses ranging from 100 mGy to 208 Gy. We show that for these samples the relative laboratory over-dispersion is not constant as a function of dose and that the over-dispersion is smaller in heated samples. We also show that the dim grains in the distributions have a greater over-dispersion than the bright grains, implying that insensitive samples will have greater values of over-dispersion than sensitive samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号