首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
It is shown that a polyester film incapable of forced high-elastic deformation can be subjected to such deformation by stretching a film-substrate system. The resulting oriented structure is stable and on being measured from the substrate, the film exhibits a hardening effect. In this case contact with and adhesion to the substrate are a necessary condition for the development of the latent potential of the film.Lenin All-Union Electrical Engineering Institute, Moscow. Translated from Mekhanika Polimerov, No. 4, pp. 731–733, July–August, 1971.  相似文献   

2.
The effect of pressure and heat treatment on the viscoelastic properties of polytetrafluoroethylene has been studied by the free torsional vibration method. It is shown that the deformation of PTFE produces an important change in the principal relaxation processes associated with the molecular mobility in the amorphous regions. On the basis of the measurements made it is concluded that the mechanical strength of the PTFE increases, which is in good agreement with the results of static tests. A conclusion is drawn concerning the molecular mechanism of the processes associated with the deformation of PTFE.Scientific-Research Institute of Plastics, Moscow. Translated from Mekhanika Polimerov, No. 5, pp. 943–945, September–October, 1974.  相似文献   

3.
The purpose of this work is to analyze size effects in the deformation occurring during nanoindentation-tests of thin metallic films on ceramic substrates. It is well known that classical phenomenological theories of plasticity are hardly applicable in cases of very small dimensions of a body [1]. Thus, the dependency of the mechanical behavior of thin films on the thickness can not be studied in the framework of classical theories. In order to simulate numerically the deformation, a specific material model has been chosen which is able to account for size effects. It bases on the theory of ”Mechanism Strain Gradient” (MSG) plasticity [2] in conjunction with the deformation theory of plasticity. The material model has been implemented via the user defined element subroutine (UEL) in the commercial FE code ABAQUS/Standard as a ten-node tetrahedron-element. With the developed subroutine the deformation of thin copper films on Si substrates during nanoindentation-tests has been simulated. Different material models of the indentor (rigid and elastic) as well as different friction conditions between the film and the pyramidal indentor were tested. Furthermore, the influence of an additional oxide layer on the films surface has been analysed. In order to verify the numerical investigations, results from nanoindentation experiments have been used for comparison [4]. The FE simulations for different thicknesses in the range of 100-600nm showed a very good agreement with the experiments. In particular, the size dependency of the force-displacement curves, calculated by using the developed subroutine, is in rather good agreement with experiments. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Experimental results and theoretical prediction of the response of glassfiber-reinforced polyester under quasi-static, static (creep), and cyclic (fatigue) loading are presented. The nonlinear strain component at static loading and the strain amplitude rate at cyclic off-axis loading of an orthotropic composite are shown to follow the associated flow rule with a single-parameter quadratic potential function. The influence of fatigue damage on deformation is considerable due to the reduction in the elastic modulus of the composite and is apparently negligible with respect to its effect on the parameters of the creep kernel.Presented at the 10th International Conference on the Mechanics of Composite Materials (Riga, April 20–23, 1998).Translated from Mekhanika Kompozitnykh Materialov, Vol. 34, No. 4, pp. 447–460, July–August, 1998.  相似文献   

5.
The energy (thermal and mechanical) effects accompanying the elastic deformation of uniaxially oriented crystalline polymers have been investigated; it has been established that, when these polymers are stretched, heat is released. It is shown that the heat release in uniaxial tension is a consequence of localization of the elastic deformation in the poorly ordered regions of the polymer. The relation between the thermoelasticity of uniaxially oriented crystalline polymers and their supermolecular structure is examined.Institute of Heteroorganic Compounds, Academy of Sciences of the USSR, Moscow. Translated from Mekhanika Polimerov, No. 5, pp. 785–798, September–October, 1970.  相似文献   

6.
The self-reinforcement effect of a solid uniaxially oriented SVM-K liquid-crystal polyamide and a copolyester of hydroxybenzoic and hydroxynaphthoic acids has been investigated by tensile-strength, stress-relaxation, and dynamic methods. The samples were prepared by spinning from lyotropic solution (SVM-K) and from a thermotropic melt (polyester). The tensile-strength and stress-relaxation tests were performed on complex fibers and the dynamic test on single fibers. The set of stress-strain curves, changing from a convex shape with two linear sections (at room temperature) to a concave shape (at high temperatures) is shown for both materials in Fig. 1. There is a pronounced difference between the deformation mechanisms at low and high strains in the stability of rigidity. At high temperatures the rigidity becomes less than the initial one during deformation and the current modulus at high strains has the same value within large ranges of temperatures and strains (Fig. 2). A low-deformation transition of another physical parameter than the yield-stress has been found. The stress-strain diagram for both investigated polymers has been generalized by using the constant value of the current modulus for the normalization of the stress value (Fig. 3). The stress-relaxation phenomena are shown to be anomalous. At high temperatures the stress-relaxation intensity decreases with increasing deformation, i.e., after deformation the polymer is characterized by a stability of rigidity which is higher than the initial value (Fig. 4). The dynamic modulus appears to increase with increasing deformation rate (Fig. 5). Due to these peculiarities the liquid-crystal polymers must be considered not only as normal high-modulus reinforcements for composite materials but also as materials, self-reinforcing under loading.Translated from Mekhanika Kompozitnykh Materialov, Vol. 30, No. 4, pp. 435–441, July–August, 1994.  相似文献   

7.
The variation of the elastic characteristics of polymeric materials tested to destruction under long-time static loads has been investigated. Experiments on polymethyl methacrylate, KAST-V glass laminate, and Soviet and Finnish polyester glass-reinforced plastics under constant and intermittent (with "recovery") static tensile loads have shown that their elastic characteristics vary with the loading regime, the type of material, and the stress level. In a number of cases the value of the modulus of elasticity falls by 25–35%. This is attributed to the reduction of the effective cross section of the specimen as a result of damage accumulation.All-Union Correspondence Structural Engineering Institute, Moscow. Translated from Mekhanika Polimerov, No. 3, pp. 430–435, May–June, 1971.  相似文献   

8.
The effect of various kinds of boundaries (solid and elastic walls, free surfaces) on the dynamics of a spherical cavity during an electrical discharge in a liquid is examined. The motion of the liquid is examined in a gas dynamic formulation. Solutions are obtained numerically using grid-characteristic methods. Special moveable grids are developed for calculating long duration processes. It is shown that a free surface has little effect on the maximum radius and period of the pulsations of a cavity. The effect of rigid and elastic walls can be neglected if they are further away than 50 times the maximum radius of the cavity. The computational results are in good agreement with experimental data obtained by others. Donetsk State University. Translated from Teoreticheskaya i Prikladnaya Mekhanika, No. 29, pp. 175–180, 1999.  相似文献   

9.
The mechanical properties of biaxially oriented polymethyl methacrylate, obtained on a broad range of stretch ratios and under a variety of orientation conditions, have been investigated. There is a fundamental difference between the variation of the forced elastic limit with increase in stretch ratio, which is monotone increasing, and the variation of such properties as the brittle strength, brittle temperature, true strength and elongation at break, which have an optimum at a certain stretch ratio. It is shown that the presence of an optimum is associated with the transformation of the supermolecular structures in the process of biaxial high-elastic deformation. A relation is established between the mechanical properties of biaxially oriented polymethyl methacrylate (orientation hardening) and the density of the molecular network.For communication 1 see [3].Moscow. Translated from Mekhanika Polimerov, No. 4, pp. 586–593, July–August, 1971.  相似文献   

10.
It has been experimentally demonstrated that for polymeric materials the area of the indentation should not be calculated from the depth of penetration of the spherical indenter, since this gives hardness values that are too low. It is shown that when the surface of a polymeric specimen is indented by a rigid ball, the effect of the spherical stress tensor on the yield point is important; the average stress on the contact area at the beginning for forced high-elastic deformation is close to the compressive yield stress of the polymeric material and considerably higher than its tensile yield stress.Institute of Polymer Mechanics, Academy of Sciences of the Latvian SSR, Riga. Translated from Mekhanika Polimerov, No. 6, pp. 995–998, November–December, 1971.  相似文献   

11.
Possibilities of controlling the internal stresses developing during production of glass reinforced plastics were investigated. A favorable effect can be obtained by prestressing the glass fiber reinforcement during molding. Prestressing during heat treatment was found to increase the strength of the fibers. The strengthening is due to a reduction in stress concentration around microcracks as a result of forced elastic and plastic deformation.Mekhanika polimerov, Vol. 1, No. 1, pp. 89–92, 1965  相似文献   

12.
The relation between coefficient of friction and elastic and high-elastic strains is investigated with reference to polyurethane subjected to friction in various liquid media. It is shown that a definite relationship between these parameters does exist. The effect of various liquids on the elastic and high-elastic deformation of polyurethane is studied.Kiev Institute of Civil Aviation Engineers. Translated from Mekhanika Polimerov, Vol. 5, No. 2. pp. 357–359, March–April, 1969.  相似文献   

13.
The surface deformation of amorphous thermoplastics (polymethyl methacrylate) by a spherical steel indentor has been investigated at various sliding velocities. Small velocities correspond to elastic and forced-elastic deformation of the surface layers and asperities. At temperatures corresponding to the high-elastic state the deformed surface layer completely recovers its shape. As the sliding velocity increases, the forced-elastic deformation is localized in a thinner layer of plastic. Starting from a certain velocity, depending on the temperature and the activation energy for transition of the chain segments from one equilibrium position to another in the process of thermal motion, the deformation of the surface layers and asperities becomes purely elastic. In the event of elastic deformation at pressures above a certain value the surface layer of plastic suffers brittle fracture in the tensile zone behind the indentor.Mekhanika Polimerov, Vol. 4, No. 1, pp. 90–94, 1968.  相似文献   

14.
A spherical elastic shell with radial transverse isotropy is considered. The periods of finite amplitude radial oscillation of the shell have been obtained in two cases, namely (i) when both the surfaces of the shell are free from traction, and (ii) when the shell boundaries are uniformly loaded in such a way that the pressure difference between inner and outer surfaces is constant with respect to time. It is observed that for free oscillation to take place it is necessary to impose a new restriction on the strain energy function in addition to those already obtained for finite amplitude oscillation of an isotropic elastic shell. In the forced oscillation case however the required conditions are of the same form as in the corresponding case for isotropic media.  相似文献   

15.
横向剪切对双模量复合材料叠层矩形板非线性弯曲的影响   总被引:1,自引:0,他引:1  
本文探讨了动力松弛(DR)法在双模量复合材料叠层矩形板非线性弯曲问题中的应用。在分析中分别采用叠层板大挠度经典理论和计及大转动(在Von Karman意义上)的复合材料叠层板剪切变形理论。我们发现,对于考虑横向剪切变形的非线性弯曲问题,如何计算虚拟密度以控制数值计算的稳定性,仍然需要进一步研究。本文提出了一种虚拟密度的计算方法,从而保证了本课题数值计算的稳定性。文中介绍了用DR法求解双模量复合材料叠层板非线性弯曲的主要步骤,给出了由轻度双模量材料(Born-Epxy(B-E))和高度双模量材料(Aramid-Rubber(A-R)和Polyester-Rubber(P-R))的两层正交叠层简支矩形板在正弦分布载荷及均布载荷作用下的非线性弯曲特性的数值结果。将所得结果和小挠度分析结果及普通复合材料的结果作了比较,并分析了横向剪切变形对无量纲中心挠度的影响。  相似文献   

16.
It was shown that below the glass transition temperature of the amorphous matrix, its viscoelastic behavior in a composite is described by the Halpin-Tsao equation for composites, as modified by Nielsen, with a sufficient degree of reliability. However, when the matrix passes into the highly elastic and especially the viscous flow state characteristics of thermoplastic matrices, a significant difference is observed in the experimental and calculated temperature curves of the elastic and matrix loss moduli. It is possible to hypothesize that this is due to hindrance of plastic deformation of the matrix in the composite not accounted for in the Halpin-Tsao model. Using simple models of the one-sided coating and sandwich type, it was shown that consideration of the stress state of a matrix in contact with a rigid coating can result in the same kind of effects as in a composite, namely, apparent toughening of the matrix in the highly elastic region and shifting of the maximum of the mechanical loss modulus to the high-temperature region.Institute of Macromolecular Compounds. Russian Academy of Sciences, St. Petersburg, Russia. Translated from Mekhanika Kompozitnykh Materialov, Vol. 33, No. 5, 690–703, September–October, 1997.  相似文献   

17.
本文给出了研究金属中激波构造与衰减的一个物理模型.为了建立高速形变下材料的本构方程和研究激波过渡带的构造,需要考虑二个独立的理论方面.首先,将比内能分解成弹性压缩能和弹性形变能,而将形变能作为弹性应变和熵的函数展开到三阶项,其中考虑了热与机械能的耦合效应.其次,从位错动力学角度建议了一个塑性松弛函数以便描述高温、高压下塑性流动的特性.另外,本文给出了一个常微分方程组用以计算定态激波过渡带中各状态变量的分布以及激波的厚度.倘若假定在激波上熵的跳跃可以忽略,并用Hugoniot压缩模量代替等熵压缩摸量,可以获得一个分析解.最后,本文还提出了求解平板对称碰撞中激波波头衰减的一个近似方法。  相似文献   

18.
The primary purpose of valve seals in inhalation and other drug dispensing devices is to inhibit leakage of highly volatile formulation from pressurised canisters. This requirement often conflicts with smooth operation of valves because of poor lubrication of seals. The repercussions of this can be variability in dispensed dose as well as loss of prime and gradual wear of seals. Although a good volume of literature is available for general purpose o-ring seals, the characteristic behaviour of those used in pharmaceutical devices deviate from this significantly. The paper studies tribology of such seals, subjected to global fitment and canister pressure deformation and localised conjunctional elastohydrodynamic pressures. It is shown that ideally smooth seals would operate under iso-viscous elastic (soft EHL) regime of lubrication. However, the predicted ultra-thin films are insufficient to ensure fluid film lubrication because of rough micro-scale nature of elastomeric seal surface and poor lubricity of the usual bio-compatible formulations. The paper also shows that siliconisation of elastomeric contacting surface only marginally improves its tribological performance.  相似文献   

19.
The elastic and strength characteristics of high-modulus composites with 12 different reinforcement schemes have been studied thoroughly. The effect of reinforcement schemes on change in elastic and strength characteristics of composites has been evaluated. A calculation of the elastic characteristics of high-modulus composites has been performed from the properties of the reinforcement and binder, and a comparison of the results with experimental data is given. Diagrams of deformation upon extension of the composites studied are given.All-Union Scientific-Research Institute of Aviation Materials, Moscow. Institute of Polymer Mechanics, Academy of Sciences of the Latvian SSR, Riga. Translated from Mekhanika Polimerov, No. 6, pp. 1019–1027, November–December, 1974.  相似文献   

20.
The deformation of an elastic plane with an elliptic hole in a uniform stress field is considered, taking into account the surface elasticity and the residual surface tension. The solution of the problem, based on the use of the linearized Gurtin–Murdoch surface elasticity relations and the complex Goursat–Kolosov potentials, is reduced to a singular integrodifferential equation. Using the example of a circular hole, for which an exact solution of the equation is obtained in closed form, the effect of the residual surface tension and the surface elasticity on the stress state close to and on the boundary of a nanohole is analysed for uniaxial tension. It is shown that the effect of the residual surface stress and the surface tension, due to deformation of the body, depends on the elastic properties of the surface, the value of the stretching load and the dimensions of the hole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号