首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
不同压电介质界面上的反平面运动裂纹   总被引:1,自引:1,他引:0  
利用积分变换技术,得到不同压电介质界面上的平面运动裂纹问题的分析解。结果表明应力及电位移强度因子均与界面裂纹扩展速度及材料参数相关,这不同于均匀压电介质中运动裂纹的结论,当两种压电介质完全相同时,本文结果将退化为均匀压电介质中反平面运动裂纹问题的解。  相似文献   

2.
In this paper, the non-local theory of elasticity is applied to obtain the behavior of a Griffith crack in the piezoelectric materials under anti-plane shear loading for permeable crack surface conditions. By means of the Fourier transform the problem can be solved with the help of a pair of dual integral equations with the unknown variable being the jump of the displacement across the crack surfaces. These equations are solved by the Schmidt method. Numerical examples are provided. Unlike the classical elasticity solutions, it is found that no stress and electric displacement singularity is present at the crack tip. The non-local elastic solutions yield a finite hoop stress at the crack tip, thus allowing for a fracture criterion based on the maximum stress hypothesis. The finite hoop stress at the crack tip depends on the crack length and the lattice parameter of the materials, respectively. The project supported by the National Natural Science Foundation of China (50232030 and 10172030)  相似文献   

3.
Summary In this paper, the behavior of a crack in functionally graded piezoelectric/piezomagnetic materials subjected to an anti-plane shear loading is investigated. To make the analysis tractable, it is assumed that the material properties vary exponentially with the coordinate parallel to the crack. By using a Fourier transform, the problem can be solved with the help of a pair of dual integral equations in which the unknown variable is the jump of the displacements across the crack surfaces. These equations are solved using the Schmidt method. The relations among the electric displacement, the magnetic flux and the stress field near the crack tips are obtained. Numerical examples are provided to show the effect of the functionally graded parameter on the stress intensity factors of the crack.The authors are grateful for financial support from the Natural Science Foundation of Hei Long Jiang Province (A0301), the National Natural Science Foundation of China (50232030, 10172030), the Natural Science Foundation with Excellent Young Investigators of Hei Long Jiang Province(JC04-08) and the National Science Foundation with Excellent Young Investigators (10325208).  相似文献   

4.
Summary  The dynamic problem of an impermeable crack of constant length 2a propagating along a piezoelectric ceramic strip is considered under the action of uniform anti-plane shear stress and uniform electric field. The integral transform technique is employed to reduce the mixed-boundary-value problem to a singular integral equation. For the case of a crack moving in the mid-plane, explicit analytic expressions for the electroelastic field and the field intensity factors are obtained, while for an eccentric crack moving along a piezoelectric strip, numerical results are determined via the Lobatto–Chebyshev collocation method for solving a resulting singular integral equation. The results reveal that the electric-displacement intensity factor is independent of the crack velocity, while other field intensity factors depend on the crack velocity when referred to the moving coordinate system. If the crack velocity vanishes, the present results reduce to those for a stationary crack in a piezoelectric strip. In contrast to the results for a stationary crack, applied stress gives rise to a singular electric field and applied electric field results in a singular stress for a moving crack in a piezoelectric strip. Received 14 August 2001; accepted for publication 24 September 2002 The author is indebted to the AAM Reviewers for their helpful suggestions for improving this paper. The work was supported by the National Natural Science Foundation of China under Grant 70272043.  相似文献   

5.
In this paper, the interaction between two collinear cracks in piezoelectric materials under anti-plane shear loading was investigated for the impermeable crack face conditions. By using the Fourier transform, the problem can be solved with two pairs of triple integral equations. These equations are solved using Schmidt's method. This process is quite different from that adopted previously. This study makes it possible to understand the two collinear cracks interaction in piezoelectric materials. The authors are grateful for financial support from the Post-Doctoral Science Foundation and the Natural Science Foundation of Heilongjiang Province.  相似文献   

6.
Summary  In this paper, the dynamic anti-plane crack problem of two dissimilar homogeneous piezoelectric materials bonded through a functionally graded interfacial region is considered. Integral transforms are employed to reduce the problem to Cauchy singular integral equations. Numerical results illustrate the effect of the loading combination parameter λ, material property distribution and crack configuration on the dynamic stress and electric displacement intensity factors. It is found that the presence of the dynamic electric field could impede of enhance the crack propagation depending on the time elapsed and the direction of applied electric impact. Received 4 December 2001; accepted for publication 9 July 2002 This work is supported by the National Natural Science Foundation of China through Grant No. 10132010.  相似文献   

7.
Summary The propagation of an anti-plane moving crack in a functionally graded piezoelectric strip (FGPS) is studied in this paper. The governing equations for the proposed analysis are solved using Fourier cosine transform. The mixed boundary value problems of the anti-plane moving crack, which is assumed to be either impermeable or permeable, are formulated as dual integral equations. By appropriate transformations, the dual integral equations are reduced to Fredholm integral equations of the second kind. For the impermeable crack, the stress intensity factor (SIF) of the crack in the FGPS depends on both the mechanical and electric loading, whereas, the SIF for the permeable crack depends only on the mechanical loading. The results obtained show that the gradient parameter of the FGPS and the velocity of the crack have significant influence on the dynamic SIF.Support from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. HKU 7081/00E) is acknowledged. Support from the National Natural Science Foundation of China (Project No. 10072041) is also acknowledged.  相似文献   

8.
The stress and deformation fields near the tip of an anti-plane crack growing quasi-statically along an interface of elastic perfectly plastic materials are given in this paper. A family of solutions for the growing crack fields is found covering all admissible crack line shear stress ratios. The project supported by the National Natural Science Foundation of China  相似文献   

9.
In this paper, the dynamic interaction between two collinear cracks in a piezoelectric material plate under anti-plane shear waves is investigated by using the non-local theory for impermeable crack surface conditions. By using the Fourier transform, the problem can be solved with the help of two pairs of triple integral equations. These equations are solved using the Schmidt method. This method is more reasonable and more appropriate. Unlike the classical elasticity solution, it is found that no stress and electric displacement singularity is present at the crack tip. The non-local dynamic elastic solutions yield a finite hoop stress at the crack tip, thus allowing for a fracture criterion based on the maximum dynamic stress hypothesis. The project supported by the Natural Science Foundation of Heilongjiang Province and the National Natural Science Foundation of China(10172030, 50232030)  相似文献   

10.
The dynamic behavior of two parallel symmetric cracks in a piezoelectric strip under harmonic anti-plane shear waves is studied using the Schmidt method for permeable crack surface conditions. The cracks are parallel to the edge of the strip. By means of the Fourier transform, the problem can be solved with the help of two pairs of dual integral equations. These equations are solved using the schmidt method. The results show that the stress and the electric displacement intensity factors depend on the geometry of the cracks, the frequency of incident waves, the distance between cracks and the thickness of the strip. It is also found that the electric displacement intensity factors for the permeable crack surface conditions are much smaller than those for the impermeable crack surface conditions. Project supported by the Post Doctoral Science Foundation of Heilongjiang Province, the Natural Science Foundation of Heilongjiang Province, the National Science Foundation with the Excellent Young Investigator Award (No. 19725209) and the Scientific Research Foundation of Harbin Institute of Technology (HIT.2000.30).  相似文献   

11.
The dynamic behavior of two collinear anti-plane shear cracks in a piezoelectric layer bonded to two half spaces subjected to the harmonic waves is investigated by a new method. The cracks are parallel to the interfaces in the mid-plane of the piezoelectric layer. By using the Fourier transform, the problem can be solved with two pairs of triple integral equations. These equations are solved by using Schmidt’s method. This process is quite different from that adopted previously. Numerical examples are provided to show the effect of the geometry of cracks, the frequency of the incident wave, the thickness of the piezoelectric layer and the constants of the materials upon the dynamic stress intensity factor of cracks.  相似文献   

12.
Summary  The dynamic response of an interface crack between two dissimilar piezoelectric layers subjected to mechanical and electrical impacts is investigated under the boundary condition of electrical insulation on the crack surface by using the integral transform and the Cauchy singular integral equation methods. The dynamic stress intensity factors, the dynamic electrical displacement intensity factor, and the dynamic energy release rate (DERR) are determined. The numerical calculation of the mode-I plane problem indicates that the DERR is more liable to be the token of the crack growth when an electrical load is applied. The dynamic response shows a significant dependence on the loading mode, the material combination parameters as well as the crack configuration. Under a given loading mode and a specified crack configuration, the DERR of an interface crack between piezoelectric media may be decreased or increased by adjusting the material combination parameters. It is also found that the intrinsic mechanical-electrical coupling plays a more significant role in the dynamic fracture response of in-plane problems than that in anti-plane problems. Received 4 September 2001; accepted for publication 23 July 2002 The work was supported by the National Natural Science Foundation under Grant Number 19891180, the Fundamental Research Foundation of Tsinghua University, and the Education Ministry of China.  相似文献   

13.
IntroductionPiezoelectric materials have potentials for use in many modern devices and compositestructures. The presence of various defects, such as inclusions, holes, dislocations andcracks, can greatly influence their characteristics and coupled behavio…  相似文献   

14.
The dynamic behavior ofa Griffith permeable crack under harmonic anti-plane shearwaves in the piezoelectric materials is investigated by use of the non-local theory.To overcome themathematical difficulties,a one-dimensional non-local kernel is used instead of a two-dimensionalone for the anti-plane dynamic problem to obtain the stress and the electric displacement near thecrack tips.By means of Fourier transform,the problem can be solved with a pair of dual integralequations that the unknown variable is the jump of the displacement across the crack surfaces.These equations are solved with the Schmidt method and numerical examples are provided.Con-trary to the previous results,it is found that no stress and electric displacement singularities arepresent at the crack tip.The finite hoop stress and the electric displacement depend on the cracklength,the lattice parameter of the materials and the circle frequency of the incident waves.Thisenables us to employ the maximum stress hypothesis to deal with fracture problems in a naturalway.  相似文献   

15.
Summary This paper investigates the problem of an anti-plane interfacial crack between two dissimilar piezoelectric material layers. A single crack is first considered. The effect of interaction of two collinear cracks in the medium on the field intensity factors is investigated. The solutions of several particular cases, including an infinite piezoelectric bi-material and a piezoelectric material bonded to an elastic medium, are given. The bi-material constants governing the behavior of the crack tip fields are identified. By considering the crack as a notch of finite thickness, it is shown that the thickness of the notch has a pronounced influence on the crack tip field. The results for the assumption of a permeable crack represent the limit case where the notch thickness is reduced to zero.BLW would like to thank the National Science Foundation of China (#10102004) and the City University of Hong Kong (DAG #7100219) for the support of this work. YGS also thanks the Multidiscipline Scientific Research Foundation Project (HIT. MD 2001. 39) of the Harbin Institute of Technology and the SRF for ROCS, SEM.accepted for publication 3 April 2003  相似文献   

16.
In transversely isotropic elastic solids, there is no surface wave for anti-plane deformation. However, for certain orientations of piezoelectric materials, a surface wave propagating along the free surface (interface) will occur and is called the Bleustein–Gulyaev (Maerfeld–Tournois) wave. The existence of the surface wave strongly influences the crack propagation event. The nature of anti-plane dynamic fracture in piezoelectric materials is fundamentally different from that in purely elastic solids. Piezoelectric surface wave phenomena are clearly seen to be critical to the behavior of the moving crack. In this paper, the problem of dynamic interfacial crack propagation in elastic–piezoelectric bi-materials subjected to uniformly distributed dynamic anti-plane loadings on crack faces is studied. Four situations for different combination of shear wave velocity and the existence of MT surface wave are discussed to completely analyze this problem. The mixed boundary value problem is solved by transform methods together with the Wiener–Hopf and Cagniard–de Hoop techniques. The analytical results of the transient full-field solutions and the dynamic stress intensity factor for the interfacial crack propagation problem are obtained in explicit forms. The numerical results based on analytical solutions are evaluated and are discussed in detail.  相似文献   

17.
The main objective of this work is the contribution to the study of the piezoelectric structures which contain preexisting defect (crack). For that, we consider a Griffith crack located at the interface of two piezoelectric materials in a semi-infinite plane structure. The structure is subjected to an anti-plane shearing combined with an in-plane electric displacement. Using integral Fourier transforms, the equations of piezoelectricity are converted analytically to a system of singular integral equations. The singular integral equations are further reduced to a system of algebraic equations and solved numerically by using Chebyshev polynomials. The stress intensity factor and the electric displacement intensity factor are calculated and used for the determination of the energy release rate which will be taken as fracture criterion. At the end, numerical results are presented for various parameters of the problem; they are also presented for an infinite plane structure.  相似文献   

18.
By using the well-developed integral transform methodology, the dynamic response of stress and electric displacement around a finite crack in an infinite piezoelectric strip are investigated under arbitrary dynamic anti-plane loads. The dynamic stress intensity factors and electric displacement are obtained analytically. It is shown that the dynamic crack-tip stress and electric field still have a square-root singularity. Numerical computations for the dynamic stress intensity factor show that the electric load has a significant influence on the dynamic response of stress field. The higher the ratio of the crack length to the width of the strip, the higher the peak value of the dynamic stress intensity factor is. On the other hand, the dynamic response of the electric field is determined solely by the applied electric load. The electric field will promote or retard the propagation of the crack depending on the time elapse since the application of the external electro-mechanical loads. The project supported by the National Natural Science Foundation of China and the Post-Doctor Science Foundation of China  相似文献   

19.
An exact and complete solution of the problem of a half-plane crack in an infinite transversely isotropic piezoelectric body is presented. The upper and lower crack faces are assumed to be loaded antisymmetrically by a couple of tangential point forces in opposite directions. The solution is derived through a limiting procedure from that of a penny-shaped crack. The expressions for the electroelastic field are given in terms of elementary functions. Finally, the numerical results of the second and third mode stress intensity factorsk 2 andk 3 of piezoelectric materials and elastic materials are compared in figures. Project supported by the National Natural Science Foundation of China (No. 19872060 and 69982009) and the Postdoctoral Foundation of China.  相似文献   

20.
In this paper, the scattering of harmonic anti-plane shear waves by a finite crack in infinitely long strip is studied using the non-local theory. The Fourier transform is applied and a mixed boundary value problem is formulated. Then a set of dual integral equations is solved using the Schmidt method instead of the first or the second integral equation method. A one-dimensional non-local kernel is used instead of a two-dimensional one for the anti-plane dynamic problem to obtain the stress occurring at the crack tips. Contraty to the classical elasticity solution, it is found that no stress singularity is present at the crack tip. The non-local dynamic elastic solutions yield a finite hoop stress at the crack tip, thus allowing for a fracture criterion based on the maximum dynamic stress hypothesis. The finite hoop stress at the crack tip depends on the crack length, the width of the strip and the lattice parameter. Supported by the Post Doctoral Science Foundation of Heilongjiang Province, the Natural Science Foundation of Heilongjiang Province and the National Foundation for Excellent Young Investigators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号