首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The flow field around a Darrieus rotor in dynamic stall is studied by flow visualization and PIV measurements. The visualization is carried out by dye injection technique while the phase averaged velocity distributions around the blade are measured by PIV combined with a conditional imaging technique. The results indicate the appearance of dynamic stall phenomenon due to the shedding of two pairs of vortices from the blade during one rotation of the rotor. These stall vortices are produced by the separation of flow over the inner surface of the blade and the formation of roll-up vortices from the outer surface. The second stall vortices develop along the blade and strongly interact with the flow field near the blade, affecting the aerodynamic performance of the rotor.  相似文献   

2.
Leading-edge vortices on a simple delta wing were visualized by using pressure-sensitive paint (PSP). PSP is an optical pressure measurement technique based on oxygen quenching of luminescent molecules. In the present study, we used PSP composed of platinum octaethylporphyrine (PtOEP) and fluoropolymer (poly-IBM-co-TFEM [Poly (isobutylmethacrtlate-co-trifluoroethylate)]). This new paint has higher sensitivity to pressure and lower sensitivity to temperature than previous ones, reducing an error due to temperature variation during a wind tunnel test. A thin coating of PSP was applied to a delta wing model with 70-degree leading-edge sweep. The coating was excited by Xenon light and emission from the coating was detected by a high-resolution CCD camera. Tests were done at subsonic speeds in the 0.2-m Supersonic Wind Tunnel at the National Aerospace Laboratory in Japan. Complicated flow structures on the delta wing including primary and secondary vortices were clearly visualized using pressure-sensitive paint. An a priori calibration technique was used to convert measured luminescent intensity into pressure. The obtained pressure distributions were in good agreement with pressure tap data. Pressure maps were obtained for various Mach numbers, Reynolds numbers and angles of attack. It was found that an increase in Mach number delayed vortex breakdown while Reynolds number had little effect on the vortex formation.  相似文献   

3.
Numerical simulation of scramjet asymmetric nozzle flow is carried out to visualize and investigate the effects of interaction between engine exhaust and hypersonic external flow. The Single Expansion Ramp Nozzle (SERN) configuration studied here consists of flat ramp and a cowl with different combinations of ramp angle and cowl geometry. UsingPARAS 3D, simulations are performed for a free stream Mach number of 6.5 that constitutes the external flow around the vehicle. Appropriate specific heats ratio has been simulated for the jet and free stream flow. External shock wave due to jet plume interaction with free stream flow, the internal barrel shock wave and the shear layer emanating from the cowl trailing edge and sidewalls are well captured. Wall static pressure distribution on the nozzle ramp for different nozzle expansion angles has been computed for both with and without side fence. Axial thrust and normal force have been evaluated by integrating the wall static pressure. Effect of cowl length variation and side fence on the SERN performance has also been studied and found to be quite significant. Based on this study, an optimum ramp angle at which the SERN generates maximum axial thrust is obtained. SERN angle of 20° was found to be optimum when the flight axis coincides with nozzle axis.  相似文献   

4.
5.
High-lift devices on modern airliners are a major contributor to overall airframe noise. In this paper the aeroacoustics of leading-edge slat devices in a high-lift configuration are investigated computationally. A hierarchical methodology is used to enable the rapid evaluation of different slat configurations. The overall goal is to gain a deeper understanding of the noise generation and amplification mechanisms in and around the slat, and the effects of slat system geometry.In order to perform parametric studies of the aeroacoustics, a simplified 2-D model of the slat is used. The flow and aeroacoustics are computed using a compressible, unsteady, Reynolds-Averaged Navier-Stokes code. A robust buffer zone boundary condition is used to prevent the reflection of outgoing acoustic waves from contaminating the long-time solution. A Ffowcs Williams-Hawkings solver is used to compute the far field acoustic field from the unsteady flow solution and determine the directivity. The spanwise correlation length used is derived from experimental data of this high-lift configuration. The effect of spanwise correlation length on the acoustic far field is examined.The aeroacoustics of the slat system are largely governed by the geometry, especially in terms of slat overlap. We perform a study of the effects of trailing edge thickness, horizontal and vertical overlap settings for the slat on near field wave propagation and far field directivity. The implications for low-noise leading edge slat design are discussed.  相似文献   

6.
流体通过涡激振动机翼的声辐射研究   总被引:1,自引:0,他引:1  
为了有效地降低涡激噪声,研究了粘性流体通过涡激振动机翼的声辐射。采用Navier-Stokes方程描述二维机翼的流固耦合运动,用弹簧系统代替实际固体变形产生的回复力和力矩,翼型的运动是两个自由度,即垂直于来流的振荡和转动振荡;为了模拟涡激振动,机翼的初始攻角取得比较大,以便产生周期性的旋涡脱落及周期性的流体动力,后者与弹簧系统相耦合,引起振动,用Lighthill声比拟方法研究了由此引起的声辐射。计算结果表明:当涡脱频率和机翼的固有的振动频率一致时,发生锁定的现象,此时的声辐射达到最大。  相似文献   

7.
A flow visualization of the two-dimensional rigid fling-clap motions of the flat-plate wing is performed to get the knowledge of fling-clapping mechanism that might be employed by insects during flight. In this numerical visualization, the time-dependent Navier-Stokes equations are solved for two types of wing motion; ‘fling followed by clap and pause motion’ and ‘cyclic fling-clapping motion’. The result is observed regarding the main flow features such as the sequential development of the two families of separation vortex pairs and their movement. For the ‘fling followed by clap and pause motion’, a strong separation vortex pair of counterrotation develops in the opening between the wings in the fling phase and they then move out from the opening in the following clap phase. For ‘the cyclic fling-clapping motion’, the separation vortex pair developed in the outside space in the clap phase move into the opening in the following fling phase. The separation vortex pair in the opening developed in the fling phase of the cyclic motion is observed to be stronger than those of the ‘fling followed by clap and pause motion’. Regarding the strong fling separation vortex and the weak clap separation vortex above it in the opening, the flow pattern of the fling phase of the cyclic fling and clap motion is different to that of the fling phase of the first cycle. The flow pattern of the third cycle of the cyclic fling-clapping motion is observed to be almost same as that of the second cycle. Therefore, a periodicity of the flow pattern is established after the second cycle.  相似文献   

8.
9.
M. Maidi  Y. Yao 《显形杂志》2008,11(4):319-327
Direct numerical simulations have been performed in this study to visualize the flow behavior of single and multiple square jets issuing normally into a cross-flow. Three configurations are considered, a single jet located in the centre of the domain, twin jets in side-by-side (SBS) arrangement in the spanwise direction and triple jets in tandem arrangement with twin jets at the front and a third jet in downstream along the centre line. Simulation uses a jet to cross-flow velocity ratio of 2.5 and the Reynolds number 225, based on the free-stream quantities and the jet width. While the vortical structures predicted from single jet case were in good qualitatively agreement with the findings of other researchers, our results show that the process of merging between two counter-rotating vortex pairs (CRVP) in twin jets configurations is strongly dependent on the jet-to-jet edge distance. Further downstream in the far-field, results from the SBS twin jets show a most dominating larger CRVP accompanied with a smaller inner vortex pair. The observations are in good qualitative agreement with the experimental findings in the literature. The resulting flow structures of triple jets in tandem configuration have revealed, for the first time, more complicated flow interactions between individual jets and cross-flow, providing further insights of complex flow physics and its potential engineering applications.  相似文献   

10.
基于介质阻挡放电等离子体体积力气动激励机理,数值研究了两种等离子体流动控制方案对螺旋桨桨径根部处于负攻角工况下叶素气动性能的改善效果.结果显示,激励器布置在下翼面时等离子体体积力大于其布置在叶素前后缘时的情况;激励器布置在下翼面时,可抑制流动分离,使得螺旋桨桨根部位叶素产生更大的负拉力,但会减小螺旋桨的扭矩;激励器布置在前后缘时,会使螺旋桨根部叶素拉力增大,提高螺旋桨总拉力,但不能抑制流动分离,所以会增大螺旋桨的扭矩.  相似文献   

11.
流体通过二维振动翼型的声辐射研究   总被引:1,自引:0,他引:1  
推导有均流时二维运动物体的声辐射公式,研究了粘性流体通过二维翼型的声辐射。数值计算结果表明:在不同雷诺数时,声压随时间的变化不同;小雷诺数时,具有规则性,而大雷诺数时,具有非规则性,这是由于多个涡之间的相互作用而引起的;流体通过绕弹性中心的振动翼型引起的声辐射大于流体通过固定翼型的声辐射,单级子项对声场的贡献不容忽略。  相似文献   

12.
13.
An Unsteady flow field with rotating stall cells in a high specific-speed diagonal flow fan has been investigated experimentally. Although a general feature of stall cells has already indicated, i.e., the number of stall cells is one and its propagating speed is approximately 80 percent of rotor speed, little has been known about the flow field when a rotating stall occurs because of its unsteadiness. In order to capture the behavior of the rotating stall cell, measurements of the flow field at the rotor inlet were carried out with a single slant hot-wire. Those data were processed by a so-called “double phase-locked averaging” (DPLA) technique, which enabled to capture the flow field of the cell in the reference co-ordinate system fixed to the rotor. As a result, time-dependent ensemble averages of the three-dimensional velocity components at the rotor inlet have been obtained and the behavior of the rotating stall cell has been illustrated with each velocity component.  相似文献   

14.
15.
A holographic system has been developed to visualize a three-dimensional fluid flow. The system consists principally of a thermoplastic film, a monochrome video camera, a microcomputer with image-processing capability and a printer. The system makes it possible to measure a slow flow. Two examples of such, the bimodal and mixed-mode convection flows within a Bénard cell, are presented.  相似文献   

16.
17.
18.
19.
The development of a measurement system for the visualization, topological classification and quantitative analysis of complex flows in large-scale wind tunnel experiments is described. A new approach is sought whereby the topological features of the flow, e.g. stream lines, separation and reattachment regions, stagnation points and vortex lines are extracted directly and are preferably visualized in real-time in a virtual wind tunnel environment. The system is based on a stereo arrangement of two CCD cameras. A frame rate of 120 f/s allows measurements at high flow velocities. Helium filled soap bubbles are used as tracer particles. The present paper describes a simple camera calibration procedure for large measurement environments and examines the problem of fast and accurate reconstruction of path lines in three dimensions, which will enable true three-dimensional and time-resolved fluid flow visualization. Experimentally obtained visualization results for a free-stream flow, flow around a circular plate and flow over a delta wing are presented.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号