首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Racemic 1,1′-methylene[(1RS,1′RS,3RS,3′RS,5RS,5′RS)-8-oxabicyclo[3.2.1]oct-6-en-3-ol] ((±)-6) derived from 2,2′-methylenedifuran has been resolved kinetically with Candida cyclindracea lipase-catalysed transesterification giving 1,1′-methylenedi[(1R,1′R,3R,3′R,5R,5′R)-8-oxabicyclo[3.2.1]oct-6-en-3-ol] (−)-6 (30% yield, 98% ee) and 1,1′-methylenedi[(1S,1′S,3S,3′S,5S,5′S)-8-oxabicyclo[3.2.1]oct-6-en-3-yl] diacetate (+)-8, (40% yield, 98% ee). These compounds have been converted into 1,1′-methylenedi[(4S,4′S,6S,6′S)- and (4R,4′R,6R,6′R)-cyclohept-1-en-4,6-diyl] derivatives.  相似文献   

2.
The “naked sugar” (+)-(1R, 4R)-7-oxabicyclo[2.2.1]hept-5-en-one((+)-2) has been converted to D-lividosamine ((+)-1: 3-deoxy-D-glucosamine) and derivatives via (+)-2-chloro-2,3-dideoxy-5,6-O-isopropylidene-D-arabino-hexono-1,4-lactone ((+)-33) and (+)-2-azido-2,3-dideoxy-5,6-O-isopropylidene-D-ribo-hexono-1,4-lactone ((+)-34) in a highly stereoselective fashion. Similarly, 2-acetamido-2,3-dideoxy-D-arabino-hexose and derivatives were derived from the “naked sugar” (−)-(1S,4S-7-oxabicyclo[2.2.1]-hept-5-en-2-one ((−)-2) via the double hydroxylation of the C=C double bond in (−)-N-benzyl-N-[(1R,2S,4S)-6-bromo-7-oxabicyclo[2.2.1]hept-5-en-2-endo-yl] amine ((−)-40).  相似文献   

3.
The chiral ligands, 4,4′-bis{(1S,2R,4S)-(−)-bornyloxy}-2,2′-bipyridine, (1S,2R,4S)-1, and 4,4′-bis{(1R,2S,4R)-(+)-bornyloxy}-2,2′-bipyridine, (1R,2S,4R)-1, have been prepared and characterized by spectroscopic techniques and, for (1S,2R,4S)-1, by single crystal X-ray diffraction. Despite the use of enantiomerically pure ligands, the formation of the complexes [Fe((1S,2R,4S)-1)3]2+, [Ru((1S,2R,4S)-1)3]2+, [Ru((1S,2R,4S)-1)(bpy)2]2+ and [Ru((1R,2S,4R)-1)(bpy)2]2+ proceeds without preference for either the Δ or Λ-diastereoisomers.  相似文献   

4.
The oxidative cyclization of 2-(3-pentenyl)phenol catalyzed by [(η3-pinene)PdOAc]2 gives optically active (+)-2-vinylchroman (25% e.e.), while (−)-2-(1-hydroxyethyl)chroman (56% e.e.) is formed as a single diastereomer upon treatment with t-BuOOH in the presence of Ti(OiPr)4 and -(+)-diethyl tartrate. 2-(2-Butenyl)phenol also undergoes the Ti-promoted asymmetric cyclization to give (2S,1′R)-(−)-2-(1-hydroxyethyl)-2,3-dihydrobenzofuran (29% e.e.).  相似文献   

5.
(1R,2R,3R,7aR)-1,2-Dihydroxy-3-hydroxymethylpyrrolizidine (+)-Hyacinthacine A2 1 has been synthesized by Wittig's methodology using [(2′S,3′R,4′R,5′R)-3′,4′-dibenzyloxy-N-tert-butyloxycarbonyl-5′-tert-butyldiphenylsilyloxymethylpyrrolidin-2′-yl]carbaldehyde 3, prepared from a partially protected DMDP 2, and the appropriated ylide, followed by cyclization by an internal reductive amination process of the resulting unsaturated aldehyde 4 and total deprotection.  相似文献   

6.
Asymmetric hydroboration of [E]- and [Z]-2-methoxy-2-butene, using (−)-diisopinocampheylborane at −25°C in THF solvent, followed by oxidation using H2O2/NaOH, gave (−)-[2R,3R]- and (+)-[2R,3S]-3-methoxy-2-butanols in >97 and 90% ee, respectively. (−)-[2R,3R]-3-Methoxy-2-butanol was converted to (−)-[2R,3R]-butane-2,3-diol (>97% ee, in an overall yield of 65%).  相似文献   

7.
Daniela Fattori  Pierre Vogel   《Tetrahedron》1992,48(48):10587-10602
(1S,4S)-7-Oxabicyclo[2.2.1]hept-5-en-2-one ((−)-5, a “naked sugar”) has been converted to (−)-(1R,4S,6S)-6-endo-benzyloxy-2-bromo-7-oxabicyclo[2.2.1]hept-2-ene ((−)-12) in a highly stereoselective fashion. Double hydroxylation of the C=C double bond of (−)-12, followed by acetylation and Baeyer-Villiger oxidation of the resulting -acetoxyketone (−)-14 afforded (−)-5-O-acetyl-2-O-benzyl-3-deoxy-β-D-arabino-hexofuranurono-6,1-lactone ((−)-15). This compound was converted readily into (+)-methyl 3-deoxy--D-arabino-hexofuranoside ((+)-6 and (+)-methyl 3-deoxy-β-L-xylo-hexofuranoside ((+)-7) and partially protected derivatives. (−)-15 was also converted into 4-deoxy-D-lyxo-hexopyranose (34) and several partially protected derivatives such as (+)-methyl 4-deoxy-2,3-O-isopropylidene--D-lyxo-hexopyranoside ((+)-8).  相似文献   

8.
(+)-Carpamic acid [(2′R,5′S,6′S)-8-(5′-hydroxy-6′-methylpiperidin-2′-yl)octanoic acid, 1] was synthesized from (S)-alanine, employing intramolecular and reductive amination of acyclic amino ketone 8 as the key step to generate the piperidine ring.  相似文献   

9.
Diastereomeric mixtures of the palladium, the platinum, and the rhodium complexes were prepared from [P(R,S),3R,4R,P′(R,S)]-3,4-bis(phenylphosphino)pyrrolidine (1a). The phosphorus atoms in bis[(P(R,S),3R,4R,P′(R,S))-1-(t-butoxycarbonyl)-3,4-bis(phenylphosphino)pyrrolidine-P,P′]dihalogenopalladium (2) can be alkylated stereoselectively with iodomethane. The P---H bonds in 2 open epoxides, and add to Michael systems, to give new ligands, which can be split off from the palladium with cyanide. The three isomerically pure [(PR,3R,4R,P′R)(PS,3R,4R,P′S)(PR,3R,4R,P′S)]-1-(t-butoxycarbonyl)-3,4- bis[(2-cyanoethyl)phenylphosphino]pyrrolidines were prepared via the neutral diiodopalladium complexes. [(PS,3R,4R,P′S)1-(t-butoxycarbonyl)-3,4-bis[(2-cyanoethyl)phenylphosphino]pyrrolidine-P,P′]diiodopalladium(II) (14-1) was characterised by X-ray crystallography.  相似文献   

10.
The “naked sugar” (+)-(1R,2R,4R)-2-cyano-7-oxabicyclo[2.2.1]hept-5-en-2-exo-yl acetate ((+)-3) was converted in ten synthetic steps into the new C-nucleoside (1R)-1-C-(6′-amino-7′H-purin-8′-yl)-1,4-anhydro-3-azido-2,3-dideoxy- D-erythro-pentitol ((+)-2) in 19% overall yield.  相似文献   

11.
Enantioselective acetylation of (±)-4-(1-hydroxyethyl)benzenesulfonamide 6 with ‘Acylase I’ (No. A 2156) from Aspergillus melleus in the presence of vinyl acetate gave (R)-4-(1-acetoxyethyl)benzenesulfonamide 7 (98% ee) and (S)-6 (98% ee). Both (S)-6 and (R)-7 were individually converted to the (S)-hydroxyhexamide 2 (>99% ee) and (R)-hydroxyhexamide 2 (>99% ee), respectively. The absolute configuration of a metabolite (−)-hydroxyhexamide 2 from acetohexamide 1 was found to be S based on unequivocal chemical methods including X-ray analysis.  相似文献   

12.
K. Mori 《Tetrahedron》1975,31(24):3011-3012
(S)-(+)-Sulcatol (1) and its antipode (1′) were synthesized from (R)-(−)-glutamic acid (2), and its antipode (2′), respectively. This established the absolute configurations of both enantiomers of sulcatol and afforded key materials to study the relationship between pheromone activity and chirality.  相似文献   

13.
The antipodes of 1-aryl-, 1-alkyl- and 1-alkoxy-3-methyl-3-phospholene 1-oxides 1a–h and 1-phenyl-3-methyl-3-phospholene 1-sulfide 1i were separated in good yields and high enantiomeric excesses (up to >99% ee) by resolution via formation of diastereomeric complexes with either (−)-(4R,5R)-4,5-bis(diphenylhydroxymethyl)-2,2-dimethyldioxolane 2 (TADDOL) or (−)-(2R,3R)-,,′,′-tetraphenyl-1,4-dioxaspiro[4.5]decan-2,3-dimethanol 3. The stereostructure of the supramolecular formations and the absolute configurations of the 3-phospholene oxides 1a, 1e and 1f were elucidated by single crystal X-ray crystallography. CD spectroscopy was also useful in determining the absolute configurations of some phospholene oxides 1b, 1c, 1g and 1h.  相似文献   

14.
An enantiodivergent preparation of (+)-(R)- and (−)-(S)-3-amino-4,4-dimethyl-1-phenylpyrrolidin-2-one, (R)- and (S)-9, and several derivatives, from 4,4-dimethyl-1-phenylpyrrolidin-2,3-dione, 4, and (R)- or (S)-1-phenylethylamine, (R)- or (S)-5, as the chirality transfer agents, is described. Amine (S)-9 has also been used as a chiral auxiliary in a diastereoselective Michael reaction.  相似文献   

15.
3-exo,3′-exo-(1R,1′R)-bicamphor (12) is obtained from 3-exo,3′-exo-(1R,1′R)-bithtiocamphor (3) by condensation with hydrazine hydrate followed by hydrolysis of the resulting dihydropyridazine 11. Deprotonation of 12 with NaH and subsequent treatment with potassium hexacyanoferrate (III) furnishes the 2,2′-dioxo-3,3′-bibornanylidene 13, whilst reduction of 12 with L1AlH4 affords the 3,3′-biisoborneol 16. Further related transformations to various 2,2′-difunctional 3,3′-bibornane derivatives are described, which are could be of interest as chiral ligands  相似文献   

16.
The reaction of [R-(R,R)]-(+)589-[(η5-C5H5){1,2-C6H4(PMePh)2}Fe(NCMe)]PF6 with (±)-AsHMePh in boiling methanol yields crystalline [R-[(R)-(R,R)]-(+)589)-[(η5-C5H5){1,2-C6H4(PMePh)2}Fe(AsHMePH)PF6, optically pure, in ca. 90% yield, in a typical second-order asymmetric transformation. This complex contains the first resolved secondary arsine. Deprotonation of the secondary arsine complex with KOBut at −65°C gives the diastereomerically pure tertiary arsenido-iron complex [R-[(R),(R,R)]]-[((η5-C5H5){1,2-C6H4(PMePh)2}FeAsMePh] · thf, from which optically pure [R-[(S),(R,R)]]-(+)589-[(η5-C5H5){1,2-C6H4(PMePh)2}Fe(AsEtMePh)PF6 is obtained by reaction with iodoethane. Cyanide displaces (R)-(−)589-ethylmethylphenylarsine from the iron complex, thereby effecting the asymmetric synthesis of a tertiary arsine, chiral at arsenic, from (±)-methylphenylarsine and an optically active transition metal auxiliary.  相似文献   

17.
The asymmetric transfer hydrogenation (ATH) of ferrocenyl ketones, such as FcC(O)CH2Y [Fc = ferrocenyl, Y = H (1a), CH3 (1b), Cl (1c) or N3 (1d)] has been carried out using the Noyori/Ikariya catalysts [(−)-(1R,2S)-ephedrine] or N-tosyl-(1R,2R)-diphenylethylenediamine [(R,R)-TsDPEN] as chiral ligands combined with [RuCl26-benzene)]2 and 2-PrOH or HCO2H–Et3N as the hydrogen sources, respectively. The best results were achieved with the [(R,R)-TsDPEN–RuIIHCO2H–Et3N] catalytic system, which produced the ferrocenylalcohols (R)-2a, (R)-2c, and (R)-2d in good yields and excellent enantiomeric excesses (>98% ee).  相似文献   

18.
Two erythro-isomers of 2,2′-dimethoxy-4-(3-hydroxy-1-propenyl)-4′-(1,2,3-trihydroxypropyl)diphenyl ether, (7′S, 8′S)-9 and (7′R, 8′R)-9, were synthesized in seven steps, in which an improved method for the synthesis of the key intermediate 3 was developed. The absolute configuration of the target molecules was also confirmed.  相似文献   

19.
The enzymatic resolution products [(1R,4aR,8aR)-1,2,3,4,4a,5,6,7,8,8a-decahydro-5,5,8a-trimethyl-2-oxo-trans-naphthalene-1-methanol-2-ethylene acetal (8aR)-7 (98% ee) and {acetate of (1S,4aS,8aS)-1,2,3,4,4a,5,6,7,8,8a-decahydro-5,5,8a-trimethyl-2-oxo-trans-naphthalene-1-methanol-2-ethylene acetal} (8aS)-9 (>99% ee)] obtained by the lipase-catalyzed enantioselective acetylation of (±)-7 in the presence of vinyl acetate as an acyl donor were converted to the ,β-unsaturated ketones (8aR)-6 and (8aS)-6, respectively. Concise syntheses of (+)-totarol 1, (+)-podototarin 2 and (+)-sempervirol 3 were achieved based on Michael reactions between (8aS)-6 and the appropriate β-keto ester followed by aldol condensation. The first chiral syntheses of (+)-jolkinolides E 4 and D 5 were achieved from (5R,10R,12R)-12-hydroxypodocarpa-8(14)-en-13-one 15 derived from (8aR)-6.  相似文献   

20.
The DANTE technique and NOESY two-dimensional method have been employed to observe the isomerization of the chiral cationic complex [Pd(η3-CH2CMeCH2(P-P′)]+ (1a), where P-P′ = the chiral chelating ligand (S)(N-diphenylphosphino)(2-diphenylphosphinoxymethyl)pyrrolidine. The rate constant was found to be 0.5 s−1 in CHCl3 at 295 K and 1.50 s−1 in the presence of added free ligand. In the latter case the epimerization proceeds by a π-σ-π mechanism via the intermediacy of a primary η1-allylpalladium complex. Although the intermediate was not detected, the NMR findings reveal that it has the allylic terminus η1-bonded to palladium. The structure of 1a in its PF6 salt has been determined. The compound crystallizes in the orthorhombic space group P212121 with a 10.029(4) b 19.203(8) c 36.115(6) Å, Z = 8, R = 0.0572 and Rw = 0.0712 for 3716 observed reflections with I > 3σ(I).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号