首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 80 毫秒
1.
公安案件文本语义特征提取指的是从案件文本中提取案件的作案方式等特征.从本质上说问题是一类特殊的文本分类问题.构建了基于卷积神经网络(CNN)的文本语义特征提取方法框架.构建了CNN文本分类模型;针对多标记特征提取问题,使用问题转换法结合CNN分类方法来提取特征;讨论了分类中不均衡数据带来的问题,改进了CNN模型中的损失函数.实证结果表明:使用的CNN模型对于文本分类的效果优于传统的支持向量机等分类模型;使用问题转换法中的二值相关法结合CNN模型进行多标记语义特征提取准确率较高;改进后的CNN模型更加适合于不均衡数据的分类,宏平均F1值有了显著的提升.  相似文献   

2.
针对现有方法在智能制造过程中诊断能力有限和识别精度不高的问题,提出了一种与智能制造过程相适应的基于卷积神经网络的质量异常诊断模型。首先建立基于实时数据的过程质量图谱,以精准表达制造过程运行状态。其次,构建用于识别质量图谱的卷积神经网络诊断模型。最后,利用滑动窗口取值的方式对当前过程运行状态进行动态诊断,并通过某球磨过程验证了所提方法的有效性与实用性。结果表明,所提方法优于传统浅层模型,能够有效的对过程异常状态进行识别与诊断。  相似文献   

3.
对舰船零部件发生故障问题进行故障诊断,并对故障诊断结果进行分析,建立舰船零部件备件需求模型,给出零部件之间的发生故障概率的关系与备件需求特征;将随机森林回归原理应用到了舰船零部件的备件需求预测领域,构建了基于随机森林的预测模型,以及预测结果准确率的评价。用诊断结果数据对算法进行验证,结果表明,将随机森林算法运用到舰船的备件预测领域可以为舰船装备在一次海上任务期内备件配置问题提供参考价值。  相似文献   

4.
《数理统计与管理》2014,(6):1122-1131
本文通过引入责任准备金,提出了新的保险客户利润贡献度公式,综合考虑了历史购买行为和未来可预见的现金流,更有效地度量客户的真实贡献。此外,本文首次把非参数随机森林回归法应用到保险客户利润贡献度预测中,并和其他模型进行比较,发现非参数随机森林方法往往要优于传统的类神经网络、CART和SVC等模型。实证研究发现:利用客户的年龄、性别、地区、职业、婚姻状况等变量能较准确地预测客户利润贡献度,避免了复杂的精算过程,同时还能评估潜在客户的利润贡献度。  相似文献   

5.
随机Hopfield神经网络的稳定性   总被引:2,自引:0,他引:2  
彭国强  黄立宏 《经济数学》2005,22(4):420-423
本文讨论了随机Hop fie ld神经网络的稳定性和不稳定性,给出了几乎指数稳定性和几乎指数不稳定性判定条件。  相似文献   

6.
研究了一类混沌时滞随机神经网络同步控制问题.采用更具一般性的时滞反馈控制器,通过巧妙地构造Lyapunov数,分别得到了均方指数同步和均方渐近同步两个判别准则.仿真例子表明,新准则是有效的.  相似文献   

7.
本文给出了集成学习模型可以收敛的集成学习算法,拟自适应分类随机森林算法。拟自适应分类随机森林算法综合了Adaboost算法和随机森林算法的优势,实验数据分析表明,训练集较大时,拟自适应随机森林算法的效果会好于随机森林算法。另外,拟自适应分类随机森林算法的收敛性确保它的推广误差可以通过训练集估计,所以,对于实际数据,拟自适应分类随机森林算法不需要把数据划分为训练集和测试集,从而,可以有效的利用数据信息。  相似文献   

8.
利用随机森林特征选择算法,对信用评估的可用指标集进行特征选择,在此基础上建立基于随机森林融合朴素贝叶斯的信用评估模型.选取UCI数据库中的German数据集进行实证研究,结果表明,通过随机森林进行特征选择的随机森林融合朴素贝叶斯模型具有更高的预测准确度.  相似文献   

9.
文章针对民营企业中的信息技术业,建立包含盈利能力、营运能力、偿债能力、扩张能力、创新能力与公司规模6个方面的指标体系,采用整合改进遗传算法和神经网络的GA-BP算法,对企业的成长性建立模型进行预测与分析.进一步,为验证模型性能,从WIND金融数据库获取数据并进行预处理后,测试集上可决系数R2为0.9990,性能优于其他五种机器学习算法.通过公司市值增长率进行相关系数分析,对建立的模型进行有效性检验,结果表明所选特征的有效性与合理性.最后通过随机森林进行封装特征重要性排序,对指标模型进行简化,选出的8个特征在测试集上改进GA-BP算法的R2为0.8927,再次证明了最初指标选择的合理性.  相似文献   

10.
源代码相似性是指不同代码段功能上的相似程度,是软件工程领域一项重要的研究问题.现有的方法主要从文本、结构两方面,利用代码的统计学特征计算相似性,其最大缺点就是无法表达代码的语义特征.为解决此类问题,提出了一种融合统计信息的卷积神经网络(statistics information for code embedding convolutional neural networks, SICE-CNN)源代码相似性检测方法.该方法首先通过词嵌入对源代码进行信息表示,获取代码的词嵌入向量信息;其次,构建CNN训练模型学习源代码文档的嵌入表示;最后,计算源代码对的余弦相似值.实验表明,该方法和一般词嵌入方法相比提高了一定的性能,能较好地检测源代码的语义相似性.  相似文献   

11.
We consider Synthetic Aperture Radar (SAR) in which backscattered waves are measured from locations along a single flight path of an aircraft. Emphasis is on the case where it is not possible to form a beam with the radar. The article uses a scalar linearized mathematical model of scattering, based on the wave equation. This leads to a forward (scattering) operator, which maps singularities in the coefficient of the wave equation (viewed as a singular perturbation about a constant coefficient) to singularities in the scattered wave field. The goal of SAR is to recover a picture of the singular support of the coefficient, i.e., an a image of the underlying terrain. Traditionally, images are produced by backprojecting the data. This is done by applying the adjoint of the scattering operator to the data. This backprojected image is equivalent to that obtained by applying to the perturbed coefficient the composition of the scattering operator followed by its adjoint. We analyze this composite operator, and show that it is a paired Lagrangian operator. The properties of such operators explain the origin of certain artifacts in the backprojected image.  相似文献   

12.
战场目标的识别是一个相当复杂的过程,为了实现识别的自动化和计算机化,采用BP神经网络方法构造数学模型,选取合适的输入、输出及隐性结点,通过反复的学习和测试就可以得到符合实际的结果,从而为指挥员判断敌情提供决策依据.选取常用的音响、闪光、烟尘、机动和配置五种目标特征信息作为输入结点,通过多次仿真测试,说明运用BP神经网络进行战场目标识别是可行的,这也为情报处理自动化系统的实现提供了一个可靠的方法.  相似文献   

13.
基于直觉模糊熵权和CC-OWA算子的雷达目标识别模型   总被引:1,自引:0,他引:1  
为更完整的描述和表达雷达目标类型识别中的目标特征和目标类型之间的关系复杂性和知识缺乏性,通过直觉模糊关系描述,进而将目标识别特征信息转化为直觉模糊集信息.分析了基于直觉模糊集理论的雷达目标类型识别知识建模,揭示了直觉模糊信息的价值可以通过直觉模糊熵刻画,进而提出应用直觉模糊集的熵构造特征直觉模糊信息的权重(直觉模糊熵权),充分利用了目标类型识别知识中隐含的权重信息,并结合CC-OWA算子建立雷达目标类型识别模型与识别步骤,利用一个雷达目标识别实例说明了模型的有效性.  相似文献   

14.
基于人工神经网络和随机游走模型的汇率预测   总被引:1,自引:0,他引:1  
由于金融数据具有随机性特征,使得建模和预测变得极其困难.提出一种组合预测方法,即假定任何金融时序数据由线性和非线性两部分组成,将其中线性部分的数据通过随机游走(RW)模型进行模拟,剩余的非线性残差部分由前馈神经网络(FANN)和诶尔曼神经网络(EANN)协同处理.从实证结果可知,该组合方法相比单独使用RW、FANN或EANN模型有更高的预测精度.  相似文献   

15.
对手写体数字的识别问题进行了讨论,提出一种基于BP神经网络的识别方法.从而提高了识别效率.主要就在识别时,数字在图片上的位置和数字本身大小方面做了改进,发现数字在图片上的大小和其在图片上的位置直接影响识别效果.具体做的是,首先提取了图片的轮廓,然后归一化成28×28的图像.这样做,不仅使得图像数字区域大小相同,而且都在图像中心上,使得识别结果变的更加理想化,达到了高识别的目的.另外,选择了容错性较好的BP网络,以200组手写体数字图像作为输入向量,以其他的110组进行识别,效率达到了90%.  相似文献   

16.
仓储环境的特殊性限制了传统火灾探测设备的探测效果.为利用现有监控设备,可将图像火灾探测方法引入仓储领域.首先将采集的图像进行预处理,得出感兴趣的目标前景.然后对前景进行特征提取.最后采用基于BP神经网络的识别方法,以提取的图像特征作为输入,对网络进行训练与仿真.实验结果表明:BP神经网络对于火灾火焰图像具有很好的识别能力;作为其输入的图像特征对于火灾火焰图像有着较好的判别效果;为减少硬件投入,采用图像火灾探测方法弥补传统火灾探测设备在仓储应用中的不足是可行的.  相似文献   

17.
基于MIV-BP型网络实验的房地产项目风险识别研究   总被引:6,自引:0,他引:6       下载免费PDF全文
为了更准确更客观地识别房地产项目中的风险,为房地产项目投资决策提供科学依据和参考,有效地规避风险,本研究在BP神经网络 (Back-Propagation Neural Network)建模的基础上,采取MIV(Mean Impact Value)算法对BP神经网络模型进行变量筛选的网络优化和改良,从而形成新的优化后的MIV-BP(Mean Impact Value Back-Propagation Neural Network)神经网络,并以此用于评价房地产项目中的风险度以及各因素在风险度中的影响作用大小;同时选取目前相关的房地产项目数据进行仿真实证分析和验证。验证实验结果表明,MIV-BP型神经网络对于房地产项目风险度识别具有良好的适应性和准确性,实验结果客观,达到专家评价的要求,并在风险因素作用度分析上具有良好的应用价值。  相似文献   

18.
粒子群优化模糊神经网络在语音识别中的应用   总被引:2,自引:0,他引:2  
针对模糊神经网络训练采用BP算法比较依赖于网络的初始条件,训练时间较长,容易陷入局部极值的缺点,利用粒子群优化算法(PSO)的全局搜索性能,将PSO用于模糊神经网络的训练过程.由于基本PSO算法存在一定的早熟收敛问题,引入一种自适应动态改变惯性因子的PSO算法,使算法具有较强的全局搜索能力.将此算法训练的模糊神经网络应用于语音识别中,结果表明,与BP算法相比,粒子群优化的模糊神经网络具有较高的收敛速度和识别率.  相似文献   

19.
运用行为事件访谈法、专家小组讨论法,以及探索性因素分析与验证性因素分析方法,构建电信企业管理胜任力的结构模型及其评价指标体系.在确保测评指标合理性与有效性的前提下,提出一种基于BP神经网络的管理胜任力测评模型,通过仿真和实例表明了测评模型的有效性,为综合评价电信企业员工的管理胜任力提供了一种新方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号