共查询到19条相似文献,搜索用时 78 毫秒
1.
标准支持向量机(SVM)抗噪声能力不强,当训练样本中存在有噪声或者野点时,会影响最优分类面的产生,最终导致分类结果出现偏差。针对这一问题,提出了一种考虑最小包围球的加权支持向量机(WSVM),给每个样本点赋予不同的权值,以此来降低噪声或野点对分类结果的影响。对江汉油田某区块的oilsk81,oilsk83和oilsk85三口油井的测井数据进行交叉验证,其中核函数采用了线性、指数和RBF这3种不同的核函数。测试结果显示,无论是在SVM还是在WSVM中,核函数选择RBF识别率都是最高的,同时提出的WSVM不受核函数的影响,识别稳定性好,且在交叉验证中识别率都能够达到100%。 相似文献
2.
数学最优化是以数学的方式来刻画和找出问题最优解的一门学科.机器学习利用数据构造预测方法,并对这些方法进行研究.介绍了机器学习中与支持向量机和稀疏重构相关的最优化模型.在此基础上,给出了三个典型最优化模型的对偶问题,并详细地讨论了对偶在求解这些问题中的应用. 相似文献
3.
针对英文情感分类问题,对不同样本采用不同权重,通过引入模糊隶属度函数,通过计算样本模糊隶属度确定样本隶属某一类程度的模糊支持向量机分类算法,通过对比选取不同核函数和不同惩罚系数的结果.仿真实验结果表明应用模糊支持向量机进行英文情感分类具有较好的分类能力和较高的识别能力. 相似文献
4.
可靠性分析中的最小二乘支持向量机分类方法 总被引:1,自引:0,他引:1
为了提高支持向量分类机在处理大样本可靠性问题时的计算效率,将最小二乘支持向量分类机引入到可靠性分析中,使得支持向量机中的二次规划问题转化为求解线性方程组问题,减少了计算量.数值算例表明:基于最小二乘支持向量分类机的可靠性方法与基于支持向量分类机的可靠性方法具有一样的计算精度,而且前者的计算效率明显优于后者. 相似文献
5.
基于SVM理论的一种新的数据分类方法 总被引:2,自引:0,他引:2
杨丽明 《数学的实践与认识》2003,33(12):61-65
基于 SVM分类器在模式识别问题中有独特的优势 ,本文通过对标准 SVM模型的改造 ,提出了一种新的简单的数据分类方法 .理论分析和实验表明 ,该方法与标准 SVM分类方法相比具有处理大规模数据识别的能力且保持较高的样本识别率 ,节省存储空间等优势 . 相似文献
6.
7.
《数学的实践与认识》2013,(23)
音乐流派是区分和描述不同音乐的一种标签,借助数学和计算机的方法将大量音乐自动分为不同流派是目前国内外研究的热点问题之一.支持向量机(SVM)由于其具有严格的数学理论基础而被广泛应用于音乐流派自动分类.然而,支持向量机的惩罚参数和核参数对其分类效果具有重要影响.以交叉验证正确率作为适应值,采用人工蜂群(ABC)算法优化支持向量的控制参数.在音乐流派自动分类的仿真实验中,经ABC算法优化后的支持向量机取得的平均预测正确率为80.8000%(最优预测正确率达83%),高出默认参数SVM 18.8个百分点.与粒子群优化算法及遗传算法相比,仿真实验结果同样显示了ABC算法的优越性. 相似文献
8.
多类分类问题是数据挖掘和机器学习领域中一个重要且正在进行研究的课题.最近对该问题提出了-种具有新型结构的K-SVCR方法.与其他方法相比较,此方法最大的优点在于在训练的过程中,能够利用训练数据的所有信息.然而,它又和"一对一"方法一样,对某-个K类分类问题,需要求解K(K-1)/2个二次规划问题,才能把一个模式指派到-个适当的类别中.因此建立一个快速有效的训练算法是非常重要的.在本文中,我们首先在K-SVCR方法的基础上提出了新的模型,然后把新模型转化成-个互补问题,并利用Lagrangian隐函数进-步转化成-个强凸的无约束优化问题.并且为它建立了一个快速地Newton箅法.该算法具有全局收敛和有限步终止的性质.同时通过Sherman-Morrison-Woodbury等式,将算法中需要处理的$l\timesl$矩阵(其中是模式的总量)转变成$(n+1)\times(n+1)$的矩阵(其中n是模式的维数).对于很多多类分类问题,n远远小于1,这也说明可以有效地实现该算法.初步的实验结果表明该算法在分类的准确度和训练速度方面都有很好的表现. 相似文献
9.
10.
机器学习在人工智能领域取得了巨大的成就,在学界和业界都掀起了机器学习的热潮.针对股指期货交易速度快、交易频率高和交易量巨大且交易数据具有高纬、时序的特征,构建了新的股指期货量化投资模型,采用沪深300股指期货1分钟高频数据作为研究对象.并对比分析了神经网络、支持向量机和XGBoost对股指期货下1分钟价格的变动方向的预测能力.研究结果表明,三种机器学习方法都具有较好的预测能力,但XGBoost的预测能力要优于传统的神经网络和支持向量机. 相似文献
11.
提出一种基于数据集分割的极限学习机集成算法——DS-E-ELM.该算法主要包含以下3个步骤:首先,将数据集分成互不相关的κ个子集,选择κ一1个子集组合成一个训练集,这样可以得到κ个不同的数据集;然后将新得到的κ个数据集利用极限学习机训练得到κ个分类器;最后对κ个分类器预测得到的结果通过多数投票的方法决定预测结果.通过对6个肿瘤数据集的实验证明,DS-E-ELM与单独的ELM、Bagging、Boosting等算法相比,具有更高的分类精度,且稳定性更好. 相似文献
12.
针对高维数据中存在冗余以及极限学习机(ELM)存在随机给定权值导致算法性能不稳定等问题,将限制玻尔兹曼机(RBM)与ELM相结合提出了基于限制玻尔兹曼机优化的极限学习机算法(RBM-ELM).通过限制玻尔兹曼机对原始数据进行特征降维的同时,得到ELM输入层权值和隐含层偏置的优化参数.实验结果表明,相比较随机森林,逻辑回归,支持向量机和极限学习机四种机器学习算法,RBM-ELM算法能获得较高的分类精度. 相似文献
13.
《数学的实践与认识》2019,(19)
标准的加权超限学习机在训练不平衡数据集时,只对不同类之间赋予类权值而没有对个体的样本赋予不同的权值,忽视了样本个体的差异.针对这种情况,利用标准的超限学习机估算个体样本的权值,并与类权值结合,提出了一种改进的双重加权超限学习机分类算法,算法能很好地处理分类任务中各类训练数据分布不平衡的情形.实验结果表明,双重加权超限学习机分类算法与单重加权超限学习机、无权超限学习机相比较,在提高分类精度方面取得了较好的效果. 相似文献
14.
A fast Newton method, that suppresses input space features, is proposed for a linear programming formulation of support vector machine classifiers. The proposed stand-alone method can handle classification problems in very high dimensional spaces, such as 28,032 dimensions, and generates a classifier that depends on very few input features, such as 7 out of the original 28,032. The method can also handle problems with a large number of data points and requires no specialized linear programming packages but merely a linear equation solver. For nonlinear kernel classifiers, the method utilizes a minimal number of kernel functions in the classifier that it generates. 相似文献
15.
综合考虑二类油层的地质特点,以萨尔图油田北二区西部西块为例,利用模糊综合评判法,选择能够反映砂体沉积类型、油层发育状况等因素的静态指标将油井进行分类并评价了相关开发指标.在日常动态分析工程中,该油井分类方法能有针对性、有侧重点的对油井进行分类管理和综合调整挖潜,有助于对油井进行产能评价及改善聚驱开发效果分析,利于提高油田整体开发的经济效益.油井的分类方法同样可以在其他区块中综合应用. 相似文献
16.
针对城市轨道交通施工事故的频繁发生,建立了基于地铁施工事故案例的机器学习灾害预测模型.通过收集过往地铁施工事故案例建立数据集,引入天气气象、水文地质、周边环境、施工因素等外部风险源做为特征,分析决策树、随机森林、SVM、XGBoost等灾害预测模型对施工事故的预测能力.结果 表明经过网格搜索后XGBoost的预测效果明... 相似文献
17.
模糊聚类方法在高校分类中的应用 总被引:8,自引:2,他引:6
在对教学、科研两方面分别进行综合评价的基础上,先按教育部对学科门的划分及大学各学科门的比例对高校进行分类,再利用模糊聚类方法从教学、科研两方面分别进行聚型,当阈值降至黄金分割位0 .61 8附近时,刚好分成了四个型,称之为:教学 Ⅰ、Ⅱ、Ⅲ、Ⅳ、型和科研Ⅰ、Ⅱ、Ⅲ、Ⅳ型,然后根据每个学校的类和教学、科研两方面的型给出他们的类型结果,这样对高校进行定位比较客观、合理. 相似文献
18.
Doklady Mathematics - A new method for entropy-randomized machine learning is proposed based on empirical risk minimization instead of the exact fulfillment of empirical balance conditions. The... 相似文献
19.
TWAP与VWAP算法为两类较常见的经典交易算法.传统的VWAP算法在TWAP算法的基础上,大多使用预测日内成交量分布的方法指导算法下单.传统成交量分布的预测效果严重依赖于市场交易惯性,但交易量分布受到日内诸多突发因素的影响,导致算法对市场突发状况的应对能力较弱.本文对传统TWAP与VWAP算法进行改进,利用滚动的1分钟粒度高频实时资金博弈数据,基于Logistic分类器训练量价模型,以该预测结果为入参构建最优化期望执行均价模型,求出当下各个价格档位对应委托数量的最优解.通过相对高频的分钟级价格预测机制,保证算法实时跟踪市场行情走势并寻求相对优势的交易机会.该算法经测试可以稳定地跑赢市场均价,具备推广应用的可行性. 相似文献