首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present investigation, the operating efficiency of a bench-top air-driven microfluidizer has been compared to that of a bench-top high power ultrasound horn in the production of pharmaceutical grade nanoemulsions using aspirin as a model drug. The influence of important process variables as well as the pre-homogenization and drug loading on the resultant mean droplet diameter and size distribution of emulsion droplets was studied in an oil-in-water nanoemulsion incorporated with a model drug aspirin. Results obtained show that both the emulsification methods were capable of producing very fine nanoemulsions containing aspirin with the minimum droplet size ranging from 150 to 170 nm. In case of using the microfluidizer, it has been observed that the size of the emulsion droplets obtained was almost independent of the applied microfluidization pressure (200–600 bar) and the number of passes (up to 10 passes) while the pre-homogenization and drug loading had a marginal effect in increasing the droplet size. Whereas, in the case of ultrasound emulsification, the droplet size was generally decreased with an increase in sonication amplitude (50–70%) and period of sonication but the resultant emulsion was found to be dependent on the pre-homogenization and drug loading. The STEM microscopic observations illustrated that the optimized formulations obtained using ultrasound cavitation technique are comparable to microfluidized emulsions. These comparative results demonstrated that ultrasound cavitation is a relatively energy-efficient yet promising method of pharmaceutical nanoemulsions as compared to microfluidizer although the means used to generate the nanoemulsions are different.  相似文献   

2.
《Ultrasonics sonochemistry》2014,21(4):1265-1274
This study reports on the process optimization of ultrasound-assisted, food-grade oil–water nanoemulsions stabilized by modified starches. In this work, effects of major emulsification process variables including applied power in terms of power density and sonication time, and formulation parameters, that is, surfactant type and concentration, bioactive concentration and dispersed-phase volume fraction were investigated on the mean droplet diameter, polydispersity index and charge on the emulsion droplets. Emulsifying properties of octenyl succinic anhydride modified starches, that is, Purity Gum 2000, Hi-Cap 100 and Purity Gum Ultra, and the size stability of corresponding emulsion droplets during the 1 month storage period were also investigated. Results revealed that the smallest and more stable nanoemulsion droplets were obtained when coarse emulsions treated at 40% of applied power (power density: 1.36 W/mL) for 7 min, stabilized by 1.5% (w/v) Purity Gum Ultra. Optimum volume fraction of oil (medium chain triglycerides) and the concentration of bioactive compound (curcumin) dispersed were 0.05 and 6 mg/mL oil, respectively. These results indicated that the ultrasound-assisted emulsification could be successfully used for the preparation of starch-stabilized nanoemulsions at lower temperatures (40–45 °C) and reduced energy consumption.  相似文献   

3.
Recently, nanoemulsions have been employed for different applications including food and drug industries for efficient nutrient delivery system. In this study, vitamin D (a lipophilic molecule) was encapsulated in fish oil for higher oral bioavailability. The oil-in-water nanoemulsion was formulated by ultrasonication technique with a droplet size range of 300–450 nm and a shelf life of more than 90 days. The influence of oil, water and surfactant concentration was investigated by phase diagram. The formulated nanoemulsion had encapsulation efficiency in the range of 95.7–98.2%. Further, nanoemulsion passed through simulated gastro-intestinal tract revealed an increased bioavailability than non-encapsulated vitamin. Thus, the formulation can be used as a drug delivery vehicle for various lipophilic compounds. Till date, no one have fabricated an efficient nano-vehicle for the delivery of vitamin D as well as analyzed the efficient delivery system in simulated GI-tract, this is first of its kind study in this regard. This can be scaled up further after analyzing the safety aspects.  相似文献   

4.
Preparation of pea protein isolate-xylan (PPI-X) conjugate-stabilized nanoemulsions using ultrasonic homogenization and the corresponding structure and environmental stability were investigated in this study. Conditions used to prepare nanoemulsions were optimized using a response surface methodology as follows: protein concentration 8.86 mg/mL, ultrasound amplitudes 57 % (370.5 W), and ultrasound time 16 min. PPI-X conjugate-stabilized nanoemulsions formed under these conditions exhibited less mean droplet size (189.4 ± 0.45 nm), more uniform droplet distribution, greater absolute value of zeta-potential (44.8 ± 0.22 mV), and higher protein adsorption content compared with PPI-stabilized nanoemulsions. PPI-X conjugate-stabilized nanoemulsions also exhibited even particle distribution and dense network structure, which might be reasons for the observed high interfacial protein adsorption content of conjugate-stabilized nanoemulsions. Moreover, better stability against environmental stresses, such as thermal treatment, freeze–thaw treatment, ionic strength and type, and storage time was also observed for the conjugate-stabilized nanoemulsions, indicating that this type of nanoemulsions possess a potential to endure harsh food processing conditions. Therefore, results provide a novel approach for the preparation of protein-polysaccharide conjugate-stabilized nanoemulsions to be applied as novel ingredients to meet special requirements of processed foods.  相似文献   

5.
The optimum formulation and ultrasonic condition for fabrication of cinnamon essential oil (CEO) nanoemulsion were determined using Response Surface Methodology (RSM). The CEO nanoemulsions were formed using an ultrasonic bath (43 kHz at power output of 210 W) and an ultrasonic probe (24 kHz at power of 400 W). Probe ultrasonication outperformed bath ultrasonication since it produced nanoemulsions with smaller droplet size, narrower size distribution as measured using polydispersity index (PDI), and higher viscosity. The influences of sonication time of 180.23–351.77 s, temperature of 4.82–45.18 °C, and Tween® 80 concentration of 1–3% w/w on the droplet size, PDI, and viscosity were investigated using RSM based on Box-Behnken design (BBD). The RSM revealed that the sonication time of 266 s, temperature of 4.82 °C, and Tween® 80 of 3% w/w produced the optimum CEO nanoemulsion with droplet size of 65.98 nm, PDI of 0.15, and viscosity of 1.67 mPa.s. Moreover, the optimum nanoemulsion had good stability in terms of droplet size and PDI when storing at 4, 30, and 45 °C for 90 days. The antifungal activity of the optimum CEO nanoemulsion was then investigated against Aspergillus niger, Rhizopus arrhizus, Penicillium sp., and Colletotrichum gloeosporioides in comparison to CEO coarse emulsion. The results showed that the CEO nanoemulsion had better antifungal activity than coarse emulsion of CEO.  相似文献   

6.
Response surface methodology (RSM) was used to optimize the formulation of a nanoemulsion for central delivery following parenteral administration. A mixture of medium-chain triglyceride (MCT) and safflower seed oil (SSO) was determined as a sole phase from the emulsification properties. Similarly, a natural surfactant (lecithin) and non-ionic surfactant (Tween 80) (ratio 1:2) were used in the formulation. A central composite design (CCD) with three-factor at five-levels was used to optimize the processing method of high energy ultrasonicator. Effects of pre-sonication ultrasonic intensity (A), sonication time (B), and temperature (C) were studied on the preparation of nanoemulsion loaded with valproic acid. Influence of the aforementioned specifically the effects of the ultrasonic processing parameters on droplet size and polydispersity index were investigated. From the analysis, it was found that the interaction between ultrasonic intensity and sonication time was the most influential factor on the droplet size of nanoemulsion formulated. Ultrasonic intensity (A) significantly affects the polydispersity index value. With this optimization method, a favorable droplet size of a nanoemulsion with reasonable polydispersity index was able to be formulated within a short sonication time. A valproic acid loaded nanoemulsion can be obtained with 60% power intensity for 15 min at 60 °C. Droplet size of 43.21 ± 0.11 nm with polydispersity index of 0.211 were produced. The drug content was then increased to 1.5%. Stability study of nanoemulsion containing 1.5% of valproic acid had a good stability as there are no significant changes in physicochemical aspects such as droplet size and polydispersity index. With the characteristisation study of pH, viscosity, transmission electron microscope (TEM) and stability assessment study the formulated nanoemulsion has the potential to penetrate blood–brain barrier in the treatment of epilepsy.  相似文献   

7.
In this study, nanoemulsions for skincare products were continuously produced using a hydrodynamic cavitation reactor (HCR) designed with a rotor and stator. The key component of this research is the utilization of a 3D-printed rotor in a HCR for the production of an oil-in-water nanoemulsion. Response surface methodology was used to determine the process conditions, such as speed of the rotor, flow rate, as well as, Span60, Tween60, and mineral oil concentrations, for generating the optimal droplet size in the nanoemulsion. The results showed that a droplet size of 366.4 nm was achieved under the recommended conditions of rotor speed of 3500 rpm, flow rate of 3.3 L/h, Span60 concentration of 2.36 wt%, Tween60 concentration of 3.00 wt%, and mineral oil concentration of 1.76 wt%. Moreover, the important characteristics for consideration in skincare products, such as polydispersity index, pH, zeta potential, viscosity, stability, and niacin released from formulations, were also assessed. For the niacin release profile of emulsion and nanoemulsion formulations, different methods, such as magnetic stirring, ultrasound, and hydrodynamic cavitation, were compared. The nanoemulsion formulations provided a greater cumulative release from the formulation than the emulsion. Particularly, the nanoemulsion generated using the HCR provided the largest cumulative release from the formulation after 12 h. Therefore, the present study suggests that nanoemulsions can be created by means of hydrodynamic cavitation, which reduces the droplet size, as compared to that generated using other techniques. The satisfactory results of this study indicate that the rotor-stator-type HCR is a potentially cost-effective technology for nanoemulsion production.  相似文献   

8.
An ultrasonic technique was applied to preparation of two-phase water-in-oil (W/O) emulsified fuel of water/diesel oil/surfactant. In this study, an ultrasonic apparatus with a 28 kHz rod horn was used. The influence of the horn tip position during ultrasonic treatment, sonication time and water content (5 or 10 vol%) on the emulsion stability, viscosity, water droplet size and water surface area of emulsion fuels prepared by ultrasonication was investigated. The emulsion stability of ultrasonically-prepared fuel significantly depended on the horn tip position during ultrasonic irradiation. It was found that the change in the stability with the horn tip position was partly related to that in the ultrasonic power estimated by calorimetry. Emulsion stability, viscosity and sum of water droplets surface area increased and water droplet size decreased with an increase in sonication time, and they approached each limiting value in the longer time. The maximum values of the viscosity and water surface area increased with water content, while the limiting values of the emulsion stability and water droplet size were almost independent of water content. During ultrasonication of water/diesel oil mixture, the hydrogen and methane were identified and the cracking of hydrocarbon components in the diesel oil occurred. The combustion characteristics of ultrasonically-prepared emulsion fuel were studied and compared with those of diesel oil. The soot and NOx emissions during combustion of the emulsified fuel with higher water contents were significantly reduced compared with those during combustion of diesel oil.  相似文献   

9.
Nanoemulsions can be used for transporting pharmaceutical phytochemicals in skin-care products because of their stability and rapid permeation properties. However, droplet size may be a critical factor aiding permeation through skin and transdermal delivery efficiency. We prepared d-limonene nanoemulsions with various droplet sizes by ultrasonic emulsification using mixed surfactants of sorbitane trioleate and polyoxyethylene (20) oleyl ether under different hydrophilic–lipophilic balance (HLB) values. Droplet size decreased with increasing HLB value. With HLB 12, the droplet size was 23 nm, and the encapsulated ratio peaked at 92.3%. Transmission electron microscopy revealed spherical droplets and the gray parts were d-limonene precipitation incorporated in spherical droplets of the emulsion system. Franz diffusion cell was used to evaluate the permeation of d-limonene nanoemulsion through rat abdominal skin; the permeation rate depended on droplet size. The emulsion with the lowest droplet size (54 nm) achieved the maximum permeation rate. The concentration of d-limonene in the skin was 40.11 μL/cm2 at the end of 360 min. Histopathology revealed no distinct voids or empty spaces in the epidermal region of permeated rat skin, so the d-limonene nanoemulsion may be a safe carrier for transdermal drug delivery.  相似文献   

10.
Basil oil (Ocimum basilicum) nanoemulsion was formulated using non-ionic surfactant Tween80 and water by ultrasonic emulsification method. Process of nanoemulsion development was optimized for parameters such as surfactant concentration and emulsification time to achieve minimum droplet diameter with high physical stability. Surfactant concentration was found to have a negative correlation with droplet diameter, whereas emulsification time had a positive correlation with droplet diameter and also with intrinsic stability of the emulsion. Stable basil oil nanoemulsion with droplet diameter 29.3 nm was formulated by ultrasonic emulsification for 15 min. Formulated nanoemulsion was evaluated for antibacterial activity against Escherichia coli by kinetics of killing experiment. Fluorescence microscopy and FT-IR results showed that nanoemulsion treatment resulted alteration in permeability and surface features of bacterial cell membrane.  相似文献   

11.
The use of ultrasound to generate mini-emulsions (50 nm to 1 μm in diameter) and nanoemulsions (mean droplet diameter < 200 nm) is of great relevance in drug delivery, particle synthesis and cosmetic and food industries. Therefore, it is desirable to develop new strategies to obtain new formulations faster and with less reagent consumption. Here, we present a polydimethylsiloxane (PDMS)-based microfluidic device that generates oil-in-water or water-in-oil mini-emulsions in continuous flow employing ultrasound as the driving force. A Langevin piezoelectric attached to the same glass slide as the microdevice provides enough power to create mini-emulsions in a single cycle and without reagents pre-homogenization. By introducing independently four different fluids into the microfluidic platform, it is possible to gradually modify the composition of oil, water and two different surfactants, to determine the most favorable formulation for minimizing droplet diameter and polydispersity, employing less than 500 µL of reagents. It was found that cavitation bubbles are the most important mechanism underlying emulsions formation in the microchannels and that degassing of the aqueous phase before its introduction to the device can be an important factor for reduction of droplet polydispersity. This idea is demonstrated by synthetizing solid polymeric particles with a narrow size distribution starting from a mini-emulsion produced by the device.  相似文献   

12.
The effects of high-energy fabrication methods, namely high-pressure homogenization (HPH) and ultrasonication (US), on physicochemical properties of flaxseed oil-in-water nanoemulsions (FNEs) containing clove essential oil (CEO) and/or pomegranate peel extract (PPE) were studied during storage at 4 and 25 °C. Nanoemulsions with relatively similar average droplet size were prepared by HPH and/or US. An increase in droplet size was observed over time. Lower storage temperature and fabrication by US increased Ostwald ripening rate. Higher storage temperature and fabrication by US decreased the centrifugal stability of nanoemulsions. CEO revealed better antioxidant properties than PPE. The oxidative stability was evaluated by determining secondary oxidation products, and fatty acids profile. The absence of antioxidant, fabrication by US, and higher storage temperature decreased the oxidative stability of nanoemulsions. The results of this study might be helpful in controlling the oxidation of FNEs during long-term storage and in designing functional foods and beverages.  相似文献   

13.
Fang JY  Hung CF  Hua SC  Hwang TL 《Ultrasonics》2009,49(1):39-14347
Camptothecin is a topoisomerase I inhibitor that acts against a broad spectrum of cancers. However, its clinical application is limited by its insolubility, instability, and toxicity. The aim of the present study was to develop acoustically active nanoemulsions for camptothecin encapsulation to circumvent these delivery problems. The nanoemulsions were prepared using liquid perfluorocarbons and coconut oil as the cores of the inner phase. These nanoemulsions were stabilized by phospholipids and/or Pluronic F68 (PF68). The nanoemulsions were prepared at high drug loading of ∼100% with a mean droplet diameter of 220-420 nm. Camptothecin in these systems showed retarded drug release. Camptothecin in nanoemulsions with a lower oil concentration exhibited cytotoxicity against melanomas and ovarian cancer cells. Confocal laser scanning microscopy confirmed nanoemulsion uptake into cells. Hemolysis caused by the interaction between erythrocytes and the nanoemulsions was investigated. Formulations with phosphatidylethanolamine as the emulsifier showed less hemolysis than those with phosphatidylcholine. Using a 1 MHz ultrasound, an increased release of camptothecin from the system with lower oil concentration could be established, illustrating a drug-targeting effect.  相似文献   

14.
Bioactive compounds such as ω-3 fatty acids and terpenes, have been associated with beneficial health effects; however, their solubility in the gastrointestinal tract and its bioavailability in the body are low. Nanoemulsions offer a viable alternative to disperse lipophilic compounds and improve their dissolution, permeation, absorption and bioavailability. Enzyme modified phosphatidylcholine (PC) with ω-3 fatty acids was used as emulsifier to stabilize oil-in-water nanoemulsions generated using ultrasound device. These systems were used as carriers of betulinic acid, which has reported anti-carcinogenic activity. Phospholipase-catalyzed modification of PC allowed the incorporation of 50 mol% of ω-3 fatty acids. Formation variables such as oil type and ultrasound amplitude had effects on nanoemulsion characteristics. Incorporation of betulinic acid affected globule size; however, betulinic acid nanoemulsions below 200 nm could be prepared. The conditions under which betulinic acid nanoemulsions were obtained using the modified phosphatidylcholine with the smaller globule size (91 nm) were 10% PC, 25% glycerol, medium chain oil and 30% amplitude for 12 min in the sonicator. Storage temperature had an effect on the stability of the nanoemulsions, at 5 °C we observed the smallest growth in globule size. The use of olive oil decreased the globule size growth during storage of the nanoemulsion stabilized with modified phosphatidylcholine, although globule size obtained was greater than 200 nm. Medium pH had a significant effect on the nanoemulsions; alkaline pH values improved storage stability. These results provide useful information for using this type of carrier system on the formulation of products in the pharmaceutical or food industry.  相似文献   

15.
Liquid perfluorocarbon nanodroplets (NDs) are an attractive alternative to microbubbles (MBs) for ultrasound-mediated therapeutic and diagnostic applications. ND size and size distribution have a strong influence on their behaviour in vivo, including extravasation efficiency, circulation time, and response to ultrasound stimulation. Thus, it is desirable to identify ways to tailor the ND size and size distribution during manufacturing. In this study phospholipid-coated NDs, comprising a perfluoro-n-pentane (PFP) core stabilised by a DSPC/PEG40s (1,2-distearoyl-sn-glycero-3-phosphocholine and polyoxyethylene(40)stearate, 9:1 molar ratio) shell, were produced in phosphate-buffered saline (PBS) by sonication. The effect of the following production-related parameters on ND size was investigated: PFP concentration, power and duration of sonication, and incorporation of a lipophilic fluorescent dye. ND stability was also assessed at both 4 °C and 37 °C. When a sonication pulse of 6 s and 15% duty cycle was employed, increasing the volumetric concentration of PFP from 5% to 15% v/v in PBS resulted in an increase in ND diameter from 215.8 ± 16.8 nm to 408.9 ± 171.2 nm. An increase in the intensity of sonication from 48 to 72 W (with 10% PFP v/v in PBS) led to a decrease in ND size from 354.6 ± 127.2 nm to 315.0 ± 100.5 nm. Increasing the sonication time from 20 s to 40 s (using a pulsed sonication with 30% duty cycle) did not result in a significant change in ND size (in the range 278–314 nm); however, when it was increased to 60 s, the average ND diameter reduced to 249.7 ± 9.7 nm, which also presented a significantly lower standard deviation compared to the other experimental conditions investigated (i.e., 9.7 nm vs. > 49.4 nm). The addition of the fluorescent dye DiI at different molar ratios did not affect the ND size distribution. NDs were stable at 4 °C for up to 6 days and at 37 °C for up to 110 min; however, some evidence of ND-to-MB phase transition was observed after 40 min at 37 °C. Finally, phase transition of NDs into MBs was demonstrated using a tissue-mimicking flow phantom under therapeutic ultrasound exposure conditions (ultrasound frequency: 0.5 MHz, acoustic pressure: 2–4 MPa, and pulse repetition frequency: 100 Hz).  相似文献   

16.
《Ultrasonics sonochemistry》2014,21(3):1044-1049
The plant derived essential oil nanoemulsion was prepared using a mixture of components containing eucalyptus oil as organic phase, water as continuous phase, and non ionic surfactant, Tween 80, as emulsifier at a particular proportion of 1:1 v/v%. The ultrasonication was applied for varied processing time from 0 to 30 min to study the effect of time on the formation of nanoemulsion and physical stability of formulation by this method. The transparency and stability of emulsion was enhanced when the sonication time was increased compared to hand blender emulsion. The most stable nanoemulsion was obtained in 30 min sonication having the mean droplet diameter of 3.8 nm. The antibacterial studies of nanoemulsion against Staphylococcus aureus by time kill analysis showed complete loss of viability within 15 min of interaction. Observations from scanning electron microscopy of treated bacterial cells confirmed the membrane damage compared to control bacteria. Furthermore, the wound healing potential and skin irritation activity of the formulated nanoemulsion in Wistar rats, suggested non-irritant and higher wound contraction rate with respect to control and neomycin treated rats. These results proposed that the formulated system could be favourable for topical application in pharmaceutical industries.  相似文献   

17.
Nanoscale yttrium–barium–copper oxide (Y2BaCuO5, Y211) particles were synthesized using the emulsion method and the solution method. The basic water-in-oil (w/o) emulsion system consisted of n-octane (continuous oil phase), cetyltrimethylammonium bromide (cationic surfactant), butanol (cosurfactant) and water. The composition of the emulsion system was varied and characterized by measuring the conductivity of the solutions and droplet size. The droplet size of emulsion was determined by using the dynamic light scattering method. The water content, cosurfactant content, and surfactant/n-octane ratio affected the droplet size which was in the range of 3–8 nm, and hence the w/o emulsion system was referred to as a nano-emulsion system. A model was used to verify the droplet size. The influence of salt (Y2(NO3)3) content on the droplet size was investigated and the addition of salt reduced the droplet size. The effects of reaction time and temperature on the Y211 particle sizes were also investigated. The particles were characterized using the TEM, SEM, and XRD. Nanoparticles produced by the nano-emulsion method were calcined at 850°C to form the Y211 phase as compared to solid state processing temperature of 1050°C. Based on the TEM analysis, the average diameter of the Y211 particles produced using the nano-emulsion method was in the range of 30–100 nm. The effect of adding 15% Y211 nanoparticles to the superconductor YBCO-123 as flux pinning centers, was investigated, and the transition temperature was reduced by 3 K.  相似文献   

18.
Eucalyptus oil (EO) is a natural and effective antimicrobial agent; however, it has disadvantages such as poor water solubility and instability. The aim of this study was to investigate the effect of process vessels and preparation process parameters on the particle size of the emulsion droplets using ultrasonic technique and response surface methodology to prepare eucalyptus oil nanoemulsion (EONE). The optimal sonication process parameters in conical centrifuge tubes were confirmed: sonication distance of 0.9 cm, sonication amplitude of 18%, and sonication time of 2 min. Under these conditions, the particle size of EONE was 18.96 ± 4.66 nm, the polydispersity index was 0.39 ± 0.09, and the zeta potential was −31.17 ± 2.15 mV. In addition, the changes in particle size, potential, micromorphology, and anti-Escherichia coli activity of EONE during digestion were investigated by in vitro simulated digestion. The emulsion was stable in simulated salivary fluid, tended to aggregate in simulated gastric fluid, and increased in particle size and potential value in simulated intestinal fluid. EONE showed higher anti-E. coli activity than EO by simulated digestion. These results provide a useful reference for the in vivo antimicrobial application of the essential oil.  相似文献   

19.
Water in oil emulsions are prepared by using an ultra-sonication device and used in an emulsion liquid membrane process in order to recover arsenic (V) ions from an aqueous medium. The aim of this work is the investigation of the effect of emulsifier concentration and composition, and also sonication time on the emulsion droplet size and the extraction efficiency in order to obtain stable emulsions with small droplets that favor the extraction. Results show that ultrasonic waves reduce internal droplet size which enhances the extraction of arsenic. In addition, internal droplet size is decreased initially and then increased by increasing Span 80 concentration. On the other hand, by increasing Span 80 concentration, extraction amount is increased and then decreased. Furthermore, emulsifier blends provide more stability for the emulsion. Increasing concentration of Tween 20 as a hydrophilic emulsifier up to an optimum concentration decreases internal droplet size and increases extraction amount. By increasing sonication time up to 4 min, the internal droplet size is decreased and the extraction amount is increased. If sonication time is increased further, the internal droplet size is increased and the extraction amount is decreased.  相似文献   

20.
In the present study, response surface methodology (RSM) based on central composite design (CCD) was employed to investigate the influence of main emulsion composition variables, namely drug loading, oil content, emulsifier content as well as the effect of the ultrasonic operating parameters such as pre-mixing time, ultrasonic amplitude, and irradiation time on the properties of aspirin-loaded nanoemulsions. The two main emulsion properties studied as response variables were: mean droplet size and polydispersity index. The ultimate goal of the present work was to determine the optimum level of the six independent variables in which an optimal aspirin nanoemulsion with desirable properties could be produced. The response surface analysis results clearly showed that the variability of two responses could be depicted as a linear function of the content of main emulsion compositions and ultrasonic processing variables. In the present investigation, it is evidently shown that ultrasound cavitation is a powerful yet promising approach in the controlled production of aspirin nanoemulsions with smaller average droplet size in a range of 200-300 nm and with a polydispersity index (PDI) of about 0.30. This study proved that the use of low frequency ultrasound is of considerable importance in the controlled production of pharmaceutical nanoemulsions in the drug delivery system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号