首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrophoresis is one of the most widely used analytical tools for the quantification of the charged conditions on the surface of fine particles including biological entities. Although it has been studied extensively in the past, relevant results for the case when the dispersion medium is non-Newtonian are very limited. This may occur, for example, when the concentration of the dispersed phase is not low, which is not uncommon in practice. Here, the electrophoresis of a concentrated spherical dispersion in a Carreau fluid is analyzed theoretically under the conditions of low electric potential and weak external applied electrical field. A pseudospectral method coupled with a Newton-Raphson iteration procedure is used to solve the electrokinetic equations describing the phenomenon under consideration. We conclude that the more significant the shear thinning effect of the fluid, the larger the mobility, and this phenomenon is pronounced for the case when the double layer surrounding a particle is thin. We show that if the double layer is thin and the effect of shear thinning is significant, a second vortex can be observed in the neighborhood of a particle.  相似文献   

2.
The electrophoresis of colloidal particles has been studied extensively in the past. Relevant analyses, however, are focused mainly on the electrophoretic behavior of a particle in a Newtonian fluid. Recent advances in science and technology suggest that the electrophoresis conducted in a non-Newtonian fluid can play a role in practice. Here, the electrophoresis of a concentrated colloidal dispersion in a Carreau fluid is investigated under the conditions of arbitrary electrical potential where the effect of double-layer polarization may be significant. A pseudo-spectral method coupled with a Newton-Raphson iteration scheme is used to solve the governing equations, which describe the electric, the flow, and the concentration fields. The results of numerical simulation reveal that, due to the effect of shear thinning, the electrophoretic mobility for the case of a Carreau fluid is greater than for that of a Newtonian fluid. Also, the higher the surface potential of a particle, the more significant the non-Newtonian nature of a Carreau fluid on its electrophoretic mobility.  相似文献   

3.
The electrophoretic behavior of a concentrated dispersion of soft spherical particles is investigated theoretically, taking the effects of double-layer overlapping and double-layer polarization into account. Here, a particle comprises a rigid core and an ion-penetrable layer containing fixed charge, which mimics biocolloids and particles covered by artificial membrane layers. A cell model is adopted to simulate the system under consideration, and a pseudo-spectral method based on Chebyshev polynomials is chosen for the resolution of the governing electrokinetic equations. The influence of the key parameters, including the thickness of the double layer, the concentration of particles, the surface potential of the rigid core of a particle, and the thickness, the amount of fixed charge, and the friction coefficient of the membrane layer of a particle on the electrophoretic behavior of the system under consideration is discussed. We show that while the result for the case of a dispersion containing rigid particles can be recovered as the limiting case of a dispersion containing soft particles, qualitative behaviors that are not present in the former are observed in the latter.  相似文献   

4.
The boundary effect on the electrophoretic behavior of a particle is examined by considering a sphere at an arbitrary position in a spherical cavity for the case of low electrical potential and weak applied electric field. Here, a charge-regulated model is used to describe the charge conditions on the particle surface. This model finds practical applications where the behavior of biocolloids such as cells or microorganisms and entities covered by an artificial membrane need to be simulated. The two idealized models often used in relevant studies can be recovered as the limiting cases of the present model.  相似文献   

5.
The electrophoresis of a charge-regulated spherical particle at an arbitrary position in a charged spherical cavity is modeled under conditions of low surface potential (<25 mV) and weak applied electric field (<25 kV/m). The charged cavity allows us to simulate the effect of electroosmotic flow, and the charge-regulated nature of the particle permits us to model various types of surface. The problem studied previously is reanalyzed based on a more rigorous electric force formula. In particular, the influences of various types of charged conditions on the electrophoretic behavior of a particle and the roles of all the relevant forces acting on the particle are examined in detail. Several new results are found. For instance, the mobility of a particle has a local minimum as the thickness of a double layer varies, which is not seen in the cases where the surface of a particle is maintained at a constant potential and at a constant charge density.  相似文献   

6.
The electrophoresis of a concentrated dispersion of non-Newtonian drops in an aqueous medium, which has not been investigated theoretically in the literature, is analyzed under conditions of low zeta potential and weak applied electric field. The results obtained provide a theoretical basis for the characterization of the nature of an emulsion and a microemulsion system. A Carreau fluid, which has wide applications in practice, is chosen for the non-Newtonian drops, and the unit cell model of Kuwabara is adopted to simulate a dispersion. The effects of the key parameters of a dispersion, including its concentration, the shear-thinning nature of the drop fluid, and the thickness of the double layer, on the electrophoretic behavior of a drop are discussed. In general, the more significant the shear-thinning nature of the drop fluid is, the larger the mobility is, and this effect is pronounced as the thickness of the double layer decreases. However, if the double layer is sufficiently thick, this effect becomes negligible. In general, the higher the concentration of drops is, the smaller the mobility is; however, if the double layer is either sufficiently thin or sufficiently thick, this effect becomes unimportant.  相似文献   

7.
Boundary effects on the electrophoretic behavior of a charged entity are of both fundamental and practical significance. Here, they are examined by considering the case where a sphere is at an arbitrary position in a spherical cavity under conditions of low surface potential and weak applied electrical field. Previous analyses are extended to the case of a non-Newtonian fluid, and a Carreau model is adopted for this purpose. The effects of key parameters such as the thickness of a double layer, the relative sizes of particle and cavity, the position of a particle, and the nature of a fluid on the electrophoretic mobility of a particle are discussed. Several interesting phenomena are observed. For example, if the applied electric field points toward north, the mobility of a particle has a local maximum when it is at the center of a cavity. However, if a particle is sufficiently close to the north pole of a cavity, its mobility exhibits a local minimum as its position varies. This does not occur when the particle is close to the south pole of the cavity; instead, it may move in the direction opposite to that of the applied electric field. For a Newtonian fluid, if a particle is close to the north pole of a cavity, its upward movement yields a clockwise (counterclockwise) vortex near the north pole of the cavity and a counterclockwise (clockwise) vortex near the south pole of the cavity on its right (left)-hand side. The latter is not observed for a Carreau fluid.  相似文献   

8.
The dynamic electrophoretic mobility of a concentrated dispersion of biocolloids such as cells and microorganisms is modeled theoretically. Here, a biological particle is simulated by a particle, the surface of which contains dissociable functional groups. The results derived provide basic theory for the quantification of the surface properties of a biocolloid through an electroacoustic device, which has the merit of making direct measurement on a concentrated dispersion without dilution. Two key parameters are defined to characterize the phenomenon under consideration: the first, A, is associated with the pH of the dispersion, and the second, B, is associated with the equilibrium constant of the dissociation reaction of the functional group. We show that if A is large and/or B is small, the surface potential is high, and the effect of double-layer polarization becomes significant. In this case the dynamic electrophoretic mobility may have a local maximum and a phase lead as the frequency of the applied electric field varies. Due to the hydrodynamic interaction between neighboring particles, the dynamic electrophoretic mobility decreases with the concentration of dispersion.  相似文献   

9.
The electrophoretic behavior of a spherical dispersion of polyelectrolytes of arbitrary concentration is analyzed theoretically under a salt-free condition, that is, the liquid phase contains only counterions which come from the dissociation of the functional groups of polyelectrolytes. We show that, in general, the surface potential of a polyelectrolyte increases nonlinearly with its surface charge. A linear relation exists between them, however, when the latter is sufficiently small; and the more dilute the concentration of polyelectrolytes, the broader the range in which they are linearly correlated. If the amount of surface charge is sufficiently large, counterion condensation occurs, and the rate of increase of surface potential as the amount of surface charge increases declined. Also, it leads to an inverse in the perturbed potential near the surface of a polyelectrolyte, and its mobility decreases accordingly. For a fixed amount of surface charge, the lower the concentration of polyelectrolytes and/or the lower the valence of counterions, the higher the surface potential. The qualitative behavior of the mobility of a polyelectrolyte as the amount of its surface charge varies is similar to that of its surface charge.  相似文献   

10.
The electrophoretic movement of a sphere normal to an uncharged, planar surface is analyzed theoretically, taking the effect of double layer polarization into account. Here, both the surface potential of the particle and the thickness of the double layer surrounding it can be arbitrary. We show that if double layer polarization is neglected, the effect of the surface potential of a particle on its electrophoretic velocity is inappreciable. On the contrary, it becomes significant if double layer polarization is present. However, if the distance between the particle and the surface is sufficiently close, since the hydrodynamic effect dominates, the influence of the surface potential and double layer polarization becomes insignificant.  相似文献   

11.
The electrophoretic motion of a dielectric sphere situated at the center of a spherical cavity with an arbitrary thickness of the electric double layers adjacent to the particle and cavity surfaces is analyzed at the quasisteady state when the zeta potentials associated with the solid surfaces are arbitrarily nonuniform. Through the use of the multipole expansions of the zeta potentials and the linearized Poisson-Boltzmann equation, the equilibrium double-layer potential distribution and its perturbation caused by the applied electric field are separately solved. The modified Stokes equations governing the fluid velocity field are dealt with using a generalized reciprocal theorem, and explicit formulas for the electrophoretic and angular velocities of the particle valid for all values of the particle-to-cavity size ratio are obtained. To apply these formulas, one only has to calculate the monopole, dipole, and quadrupole moments of the zeta potential distributions at the particle and cavity surfaces. In some limiting cases, our result reduces to the analytical solutions available in the literature. In general, the boundary effect on the electrophoretic motion of the particle is a qualitatively and quantitatively sensible function of the thickness of the electric double layers relative to the radius of the cavity.  相似文献   

12.
An analytical study is presented for the quasi-steady electrophoretic motion of a dielectric sphere situated at the center of a spherical cavity when the surface potentials are arbitrarily nonuniform. The applied electric field is constant, and the electric double layers adjacent to the solid surfaces are assumed to be much thinner than the particle radius and the gap width between the surfaces. The presence of the cavity wall causes three basic effects on the particle velocity: (1) the local electric field on the particle surface is enhanced or reduced by the wall; (2) the wall increases the viscous retardation of the moving particle; and (3) a circulating electroosmotic flow of the suspending fluid exists because of the interaction between the electric field and the charged wall. The Laplace and Stokes equations are solved analytically for the electric potential and velocity fields, respectively, in the fluid phase, and explicit formulas for the electrophoretic and angular velocities of the particle are obtained. To apply these formulas, one has to calculate only the monopole, dipole, and quadrupole moments of the zeta-potential distributions at the particle and cavity surfaces. It is found that the contribution from the electroosmotic flow developing from the interaction of the imposed electric field with the thin double layer adjacent to the cavity wall and the contribution from the wall-corrected electrophoretic driving force to the particle velocities can be superimposed as a result of the linearity of the problem.  相似文献   

13.
This paper outlines the application of a self-consistent cell-model theory of electrokinetics to the problem of determining the electrical conductivity of a dense suspension of spherical colloidal particles. Numerical solutions of the standard electrokinetic equations, subject to self-consistent boundary conditions, are implemented in formulas for the electrical conductivity appropriate to the particle-averaged cell model of the suspension. Results of calculations as a function of frequency, zeta potential, volume fraction, and electrolyte composition, are presented and discussed.  相似文献   

14.
The electrophoretic behavior of concentrated monodispersed, positively charged mercury drops is investigated theoretically. The present study extends previous analyses by considering arbitrary surface potentials, double-layer polarization, and the interaction between adjacent double layers. The coupled equations describing the spatial variations in the flow field, the electric field, and the concentration field are solved by a pseudo-spectral method. For a low surface potential phi(r), the mobility increases monotonically with kappaalpha; kappa and alpha are respectively the reciprocal Debye length and the radius of a mercury drop. For medium and high phi(r), the mobility curve has a reflection point, which arises from the interaction of adjacent double layers, for kappaalpha. Also, if phi(r) is high, the mobility curve may exhibit a local minimum as kappaalpha varies. This phenomenon is pronounced if the concentration of the dispersed phase is high. If the double layer is thick, the mobility increases with phi(r), and the reverse is true if it is thin. We show that the higher the concentration of the dispersed phase the smaller the mobility, and as kappaalpha becomes large the mobility approaches a constant value, which is independent of the concentration of the dispersed phase. The mobility of mercury drops is larger than that of the corresponding rigid particles.  相似文献   

15.
The boundary effect on the electrophoresis of particles covered by a membrane layer is discussed by considering a spherical particle in a spherical cavity under the conditions where the effect of double-layer polarization can be significant. The influence of the key parameters of the system under consideration on the electrophoretic mobility of a particle is investigated. These include the surface potential; the thickness of the double layer; the relative size of the cavity; and the thickness, the fixed charge density, and the friction coefficient of the membrane layer. The fixed charge in the membrane layer of a particle is found to have a significant influence on its electrophoretic behavior. For instance, depending upon the amount of fixed charge in the membrane layer, the mobility of a particle may exhibit a local minimum as the thickness of the double layer varies.  相似文献   

16.
The sedimentation of a concentrated colloidal dispersion is examined for the case of an arbitrary double-layer thickness. Here, a general mixed-type condition on particle surface is assumed, and the classic models, which assume constant surface properties, can be recovered as the special cases of the present analysis. In particular, the behavior of biological cells, which carry dissociable functional groups on their surfaces, and particles, which are capable of exchanging ions with the surrounding medium, can be simulated by the present model. The mixed-type boundary condition leads to several interesting results in both sedimentation velocity and sedimentation potential as double-layer thickness and the concentration of particles vary.  相似文献   

17.
The sedimentation of a concentrated spherical dispersion of composite particles, where a particle comprises a rigid core and a membrane layer containing fixed charge, is investigated theoretically. The dispersion is simulated by a unit cell model, and a pseudo-spectral method based on Chebyshev polynomials is adopted to solve the problem numerically. The influences of the thickness of double layer, the concentration of particles, the surface potential of the rigid core of a particle, and the amount of fixed charge in the membrane layer on both the sedimentation potential and the sedimentation velocity are discussed. Several interesting results are observed; for example, depending upon the charged conditions on the rigid core and in the membrane layer of a particle, the sedimentation potential might have both a local maximum and a local minimum and the sedimentation velocity can have a local minimum as the thickness of double layer varies. Also, the sedimentation velocity can have a local maximum as the surface potential varies. We show that the sedimentation potential increases with the concentration of particles. The relation between the sedimentation velocity and the concentration of particles, however, depends upon the thickness of double layer.  相似文献   

18.
A theoretical study is presented for the dynamic electrophoretic response of a charged spherical particle in an unbounded electrolyte solution to a step change in the applied electric field. The electric double layer surrounding the particle may have an arbitrary thickness relative to the particle radius. The transient Stokes equations modified with the electrostatic effect which govern the fluid velocity field are linearized by assuming that the system is only slightly distorted from equilibrium. Semianalytical results for the transient electrophoretic mobility of the particle are obtained as a function of relevant parameters by using the Debye-Huckel approximation. The results demonstrate that the electrophoretic mobility of a particle with a constant relative mass density at a specified dimensionless time normalized by its steady-state quantity decreases monotonically with a decrease in the parameter kappaa, where kappa(-1) is the Debye screening length and a is the particle radius. For a given value of kappaa, a heavier particle lags behind a lighter one in the development of the electrophoretic mobility. In the limits of kappaa --> infinity and kappaa = 0, our results reduce to the corresponding analytical solutions available in the literature. The electrophoretic acceleration of the particle is a monotonic decreasing function of the time for any fixed value of kappaa. In practical applications, the effect of the relaxation time for the transient electrophoresis is negligible, regardless of the value of kappaa or the relative mass density of the particle.  相似文献   

19.
The effect of the presence of a charged boundary on the electrophoretic behavior of a particle is investigated by considering a sphere at an arbitrary position in a spherical cavity under conditions of low surface potential and weak applied electric field. Previous analyses are modified by using a more realistic electrostatic force formula and several interesting results, which are not reported in the literature, are observed. We show that the qualitative behavior of a particle depends largely on its position, its size relative to that of a cavity, and the thickness of the electric double layer. In general, the presence of a cavity has the effect of increasing the conventional hydrodynamic drag on a particle through a nonslip condition on the former. Also, a decrease in the thickness of the double layer surrounding a sphere has the effect of increasing the electrostatic force acting on its surface so that its mobility increases. However, this may not be the case when an uncharged particle in placed in a positively charged cavity, where the electroosmotic flow plays a role; for example, the mobility can exhibit a local maximum and the direction of electrophoresis can change.  相似文献   

20.
Tsai P  Lou J  He YY  Lee E 《Electrophoresis》2010,31(20):3363-3371
Electrophoresis of a spherical particle normal to an air-water interface is considered theoretically in this study. The presence of the air-water interface is found to reduce the particle mobility in general, especially when the double layer is very thick. This boundary effect diminishes as the double layer gets very thin. The higher the surface potential, the more significant the reduction of mobility due to the polarization effect from the double layer deformation when the particle is in motion. Local extrema are observed in the mobility profiles with varying double layer thickness as a result. Comparison with a solid planar boundary is made. It is found that the particle mobility near an air-water interface is smaller than that near a solid one when the double layer is thick, and vice versa when the double layer is thin, with a critical threshold value of double layer thickness corresponding roughly to the touch of the interface. The reason behind it is clearly explained as the buildup of electric potential at the air-water interface, which reduces the driving force as a result.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号